

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 526-4100

CTI OS Developer's Guide for Cisco
ICM/IPCC Enterprise & Hosted
Editions
Cisco CTI OS Release 7.1(1)
June 2006

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT
NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT
ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR
THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION
PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO
LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as
part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE
PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED
OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL
DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR
INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

CCSP, CCVP, the Cisco Square Bridge logo, Follow Me Browsing, and StackWise are trademarks of Cisco Systems, Inc.; Changing the Way We
Work, Live, Play, and Learn, and iQuick Study are service marks of Cisco Systems, Inc.; and Access Registrar, Aironet, BPX, Catalyst, CCDA,
CCDP, CCIE, CCIP, CCNA, CCNP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems
Capital, the Cisco Systems logo, Cisco Unity, Enterprise/Solver, EtherChannel, EtherFast, EtherSwitch, Fast Step, FormShare, GigaDrive,
GigaStack, HomeLink, Internet Quotient, IOS, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, LightStream, Linksys, MeetingPlace,
MGX, the Networkers logo, Networking Academy, Network Registrar, Packet, PIX, Post-Routing, Pre-Routing, ProConnect, RateMUX,
ScriptShare, SlideCast, SMARTnet, The Fastest Way to Increase Your Internet Quotient, and TransPath are registered trademarks of Cisco Systems,
Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply
a partnership relationship between Cisco and any other company. (0601R)

CTI OS Developer's Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)
Copyright © 2001-2006, Cisco Systems, Inc.
All rights reserved.

CTI OS Developer’s Guide fo

C O N T E N T S
About This Guide xix

Purpose xix

Audience xix

Conventions xix

Organization xx

Other Publications xxi

Obtaining Documentation xxii

Cisco.com xxii

Product Documentation DVD xxii

Ordering Documentation xxiii

Documentation Feedback xxiii

Field Alerts and Field Notices xxiv

Cisco Product Security Overview xxiv

Reporting Security Problems in Cisco Products xxv

Obtaining Technical Assistance xxvi

Cisco Technical Support & Documentation Website xxvi

Submitting a Service Request xxvii

Definitions of Service Request Severity xxvii

Obtaining Additional Publications and Information xxviii

C H A P T E R 1 Introduction 1-1

Introduction to CTI 1-1

What is a CTI-Enabled Application? 1-2

Screen Pop 1-2
iii
r Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
Agent State Control 1-2

Third-Party Call Control 1-3

Leveraging CTI Application Event Flow 1-3

Asynchronous Events 1-3

Request-Response Paradigm 1-4

Overview of CTI OS 1-5

Advantages of CTI OS as a CTI Development Interface 1-6

Key Benefits of CTI OS for CTI Application Developers 1-7

Illustrative Code Fragments 1-8

C H A P T E R 2 CTI OS Client Interface Library Architecture 2-1

Object Server Architecture 2-1

Client Interface Library Architecture 2-2

Connection Layer 2-3

Service Layer 2-3

Object Interface Layer 2-4

Custom Application 2-4

CIL Object Model 2-4

Session Object 2-5

Agent Object 2-6

Call Object 2-6

SkillGroup Object 2-7

Object Creation and Lifetime 2-7

Reference Counting 2-7

Where To Go From Here 2-16

C H A P T E R 3 CIL Coding Conventions 3-1

CTIOS CIL Data Types 3-2

Asynchronous Program Execution 3-3
iv
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
CIL Error Codes 3-4

COM Error Codes 3-10

Generic Interfaces 3-11

Arguments 3-11

Accessing Properties and Parameters with GetValue 3-12

Setting Object Properties and Request Parameters with SetValue 3-13

UniqueObjectID 3-13

Obtaining Objects from UniqueObjectIDs 3-15

Using Button Enablement Masks 3-16

C H A P T E R 4 Building Your Application 4-1

Setting Up Your Environment for .NET 4-2

Integrating with Microsoft Visual Studio .NET 2003 4-2

Adding CTIOS Toolkit 7.1(1) Components to the “Add Reference” Dialog
Box 4-2

Adding Cisco CTI OS ActiveX 7.1(1) Controls to the Toolbox 4-3

Integrating your Application with CTI OS via the CIL 4-4

Planning and Designing Your Integration 4-4

What Language and Interface to Use 4-5

Testing CTI Applications 4-7

Developing a Test Plan 4-7

Test Environment 4-8

Using the Samples 4-8

Using The CTI OS ActiveX Controls 4-10

Building a Simple Softphone with ActiveX Controls 4-10

Adding a Hook for Screenpops 4-13

Using the COM CIL in Visual Basic 6.0 4-15

Referencing COM Components in Visual Basic 6.0 4-16

Registering for Events in Visual Basic 6.0 4-17
v
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
Next Steps 4-17

Using the COM CIL in Visual C++ 7.1(1) 4-18

Adding COM Support to your Application 4-18

Using the CIL Dynamic Link Libraries 4-19

Creating an Instance of a COM Object 4-19

Subscribing and Unsubscribing to COM Events in C++ 4-20

Next Steps 4-21

Using the C++ CIL and Static Libraries 4-21

Header Files and Libraries 4-21

Project Settings for Compiling and Linking 4-22

Subscribing for Events in C++ 4-26

STLPort 4-27

Next Steps 4-27

Using the Java CIL Libraries 4-27

Next Steps 4-28

Using the .NET CIL Libraries 4-28

Next Steps 4-29

Connecting to the CTI OS Server 4-29

How to Create the Session Instance 4-29

How to Set the Event Listener and Subscribe to Events 4-30

How to Set Connection Parameters for the Session 4-30

How to Connect the Session to the CTI OS Server 4-31

Dealing with Connection Failures 4-31

How to Set the Connection Mode 4-34

Settings Download 4-40

Disconnecting from CTI OS Server 4-42

Logging In and Logging Out an Agent 4-43

How to Log In an Agent 4-43

How to Handle Duplicate Log In Attempts 4-45
vi
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
How to Log Out an Agent 4-50

Working with Calls 4-53

Handling Multiple Calls 4-53

What is the Current Call? 4-54

How to Get a Call Object 4-54

How to Set the Current Call for the Session 4-55

Call Wrapup 4-55

Logout and NotReady Reason Codes 4-56

When Does the Application Receive the OnButtonEnablementChange()
Event? 4-57

Making Requests 4-60

Preventing Multiple Duplicate Requests 4-60

Working with Events 4-62

Handling Events in Order 4-62

Coding Considerations for CIL Event Handling 4-62

Monitoring the OnCallEnd() Event 4-63

Working with Agent Statistics 4-63

Overview 4-63

How to Set Up an Agent Application to Receive Agent Statistics 4-64

How to Set Up a Monitor-Mode Application to Receive Agent
Statistics 4-65

Accessing Agent Statistics 4-69

Changing Which Agent Statistics are Sent 4-70

Agent Statistics Computed by the Sample CTI OS Desktop 4-71

Working with Skill Group Statistics 4-72

Overview 4-72

How to Set Up a Monitor-Mode Application to Receive Skill Group
Statistics 4-72

Accessing Skill Group Statistics 4-75

Changing Which Skill Group Statistics are Sent 4-76
vii
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
Skill Group Statistics Computed by the Sample CTI OS Desktop 4-76

Enabling Silent Monitor in your Application 4-77

Creating a Silent Monitor Object 4-78

Setting the Session Mode 4-78

Initiating and Ending a Silent Monitor Session 4-80

Shutting Down Silent Monitor Manager 4-82

Deployment of Custom CTI OS Applications 4-82

Deploying Applications Using the ActiveX Controls 4-82

Deploying Applications Using COM (But Not ActiveX Controls) 4-90

Deploying Applications using C++ CIL 4-91

Deploying Applications using .NET CIL 4-91

Custom Application and CTI OS Security 4-92

Building Supervisor Applications 4-92

General Flow 4-93

Monitored and Unmonitored Events 4-93

Requesting and Monitoring the Supervisor’s Team(s) 4-94

Monitoring Agents 4-102

Monitoring Calls 4-106

Sample Code in the CTI OS Toolkit 4-110

.NET Samples 4-110

Java CIL Samples 4-113

Win32 Samples 4-113

C H A P T E R 5 CTI OS ActiveX Controls 5-1

Property Pages 5-4

Button Controls and Grid Controls 5-4

Button Controls 5-4

Grid Controls 5-5

Supervisor Status Bar 5-5
viii
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
CTI OS ActiveX Control Descriptions 5-5

AgentStateCtl 5-5

AgentSelectCtl 5-9

AgentStatisticsCtl 5-10

AlternateCtl 5-10

AnswerCtl 5-10

BadLineCtl 5-11

CallAppearanceCtl 5-11

ChatCtl 5-13

ConferenceCtl 5-13

EmergencyAssistCtl 5-15

HoldCtl 5-16

MakeCallCtl 5-17

ReconnectCtl 5-18

SkillgroupStatisticsCtl 5-19

StatusBarCtl 5-19

SupervisorOnlyCtl 5-20

RecordCtl 5-22

TransferCtl 5-22

The Silent Monitor StandAlone ActiveX Control 5-24

Connect 5-25

Disconnect 5-25

StartMonitoring 5-25

StopMonitoring 5-26

SilentMonitor Com Object Events 5-26

Deployment 5-28

Sample Usage in Visual Basic 6.0 5-28

C H A P T E R 6 Event Interfaces and Events 6-1

Event Publication Model 6-1
ix
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
ISessionEvents Interface 6-3

OnConnection 6-3

OnConnectionClosed 6-4

OnConnectionFailure 6-4

OnConnectionRejected 6-5

OnCTIOSFailure 6-5

OnCurrentAgentReset 6-7

OnCurrentCallChanged 6-8

OnFailure Event 6-8

OnGlobalSettingsDownloadConf 6-9

OnHeartbeat 6-21

OnMissingHeartbeat 6-21

OnMonitorModeEstablished 6-22

OnSnapshotDeviceConf 6-23

OnSnapshotSkillGroupList 6-24

OnTranslationRoute 6-25

ICallEvents Interface 6-27

OnAgentPrecallEvent 6-27

OnAgentPrecallAbortEvent 6-29

OnAlternateCallConf 6-31

Parameters 6-31

OnAnswerCallConf 6-31

OnCallBegin 6-32

OnCallCleared 6-35

OnCallConnectionCleared 6-36

OnCallConferenced 6-37

OnCallDataUpdate 6-40

OnCallDelivered 6-43

OnCallDequeuedEvent 6-45

OnCallDiverted 6-47
x
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
OnCallEnd 6-48

OnCallEstablished 6-49

OnCallFailed 6-51

OnCallHeld 6-52

OnCallOriginated 6-53

OnCallQueuedEvent 6-54

OnCallReachedNetworkEvent 6-56

OnCallRetrieved 6-58

OnCallServiceInitiatedEvent 6-58

OnCallStartRecordingConf 6-60

OnCallStopRecordingConf 6-60

OnCallTransferred 6-61

OnClearCallConf 6-64

OnClearConnectionConf 6-65

OnConferenceCallConf 6-66

OnConsultationCallConf 6-66

OnControlFailureConf 6-67

OnHoldCallConf 6-68

OnMakePredictiveCallConf 6-68

OnReconnectCallConf 6-69

OnReleaseCallConf 6-69

OnRetrieveCallConf 6-69

OnSendDTMFConf 6-70

OnSnapshotCallConf 6-70

OnTransferCallConf 6-74

IAgentEvents Interface 6-75

OnAgentDeskSettingsConf 6-75

OnAgentInfoEvent 6-78

OnAgentStateChange 6-79

OnAgentStatistics 6-81
xi
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
OnChatMessage 6-82

OnControlFailureConf 6-83

OnEmergencyCall 6-91

OnLogoutFailed 6-92

OnMakeCallConf 6-93

OnNewAgentTeamMember 6-94

OnPostLogout 6-96

OnPreLogout 6-98

OnQueryAgentStateConf 6-100

OnSetAgentModeEvent 6-103

OnSetAgentStateConf 6-104

OnStartMonitoringAgent 6-105

OnStopMonitoringAgent 6-106

OnUserMessageConf 6-107

ISkillGroupEvents Interface 6-107

OnSkillGroupStatisticsUpdated 6-107

OnSkillInfoEvent 6-108

IButtonEnablementEvents 6-109

OnButtonEnablementChange 6-109

OnSupervisorButtonChange 6-112

IMonitoredAgentEvents Interface 6-113

IMonitoredCallEvents Interface 6-113

ISilentMonitorEvents 6-115

OnCallRTPStarted 6-115

OnCallRTPStopped 6-117

OnStartSilentMonitorConf 6-118

OnSilentMonitorStartedEvent 6-119

OnSilentMonitorStartRequestedEvent 6-121

OnSilentMonitorSessionDisconnected 6-122

OnSilentMonitorStopRequestedEvent 6-123
xii
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
OnSilentMonitorStatusReportEvent 6-124

OnStopSilentMonitorConf 6-127

OnRTPStreamTimedoutEvent 6-128

IGenericEvents Interface 6-129

OnEvent 6-129

Java Adapter Classes 6-130

IAllInOne 6-130

IAgentEvents 6-130

IButtonEnablementEvents 6-130

ICallEvents 6-131

ISkillGroupEvents 6-131

Events in Java CIL 6-131

Events in .NET CIL 6-132

Getting All Event Parameters 6-133

How to Get All Parameters from an Event 6-133

C H A P T E R 7 CtiOs Object 7-1

Methods 7-2

DumpProperties 7-2

GetAllProperties 7-3

GetElement 7-4

GetLastError (Java and .NET only) 7-5

Remarks 7-6

GetNumProperties 7-6

GetPropertyName 7-7

GetPropertyType 7-8

GetValue 7-9

GetValueArray 7-10

GetValueBoolObj (Java and .NET only) 7-11
xiii
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
GetValueInt 7-12

GetValueIntObj (Java only) 7-13

GetValueShortObj (Java only) 7-14

GetValueString 7-14

GetValueUIntObj (Java only) 7-15

GetValueUShortObj (Java only) 7-16

IsValid 7-16

ReportError (Java and .NET only) 7-18

SetValue (Java and .NET) 7-18

SetValue (C++, COM, and VB) 7-19

C H A P T E R 8 Session Object 8-1

Session Object Properties 8-2

Methods 8-4

AddEventListener (Java and .NET only) 8-6

AddListener Methods (C++ only) 8-7

Connect 8-8

CreateSilentMonitorManager 8-11

CreateWaitObject (C++, Java, and .NET) 8-12

DestroySilentMonitorManager 8-13

DestroyWaitObject (C++ , Java, and .NET) 8-14

DisableSkillGroupStatistics (C++ , Java, and .NET) 8-14

Disconnect 8-15

DumpProperties 8-16

EnableSkillGroupStatistics (C++, Java, and .NET) 8-16

GetAllAgents 8-17

GetAllCalls 8-21

GetAllProperties 8-25

GetAllSkillGroups 8-25

GetCurrentAgent 8-26
xiv
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
GetCurrentCall 8-27

GetCurrentSilentMonitor 8-27

GetElement 8-28

GetNumProperties 8-28

GetObjectFromObjectID 8-28

GetPropertyName 8-30

GetPropertyType 8-30

GetSystemStatus (Java, .NET, and C++ only) 8-30

GetValue Methods 8-30

IsAgent 8-31

IsSupervisor 8-31

IsValid 8-32

LogToServer 8-32

RemoveEventListener (Java and .NET) 8-33

RemoveListener Methods (C++ only) 8-34

RequestDesktopSettings 8-34

SetAgent 8-36

SetCurrentCall 8-38

SetCurrentSilentMonitor 8-39

SetMessageFilter 8-40

SetSupervisorMonitorMode 8-41

Notes On Message Filters 8-42

Message Filter Syntax 8-42

A Simple Example 8-42

General Form of Filter Syntax 8-43

Combining Filters 8-43

Filtering for Specific Events 8-44

Filtering Skillgroup Statistics 8-46
xv
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
C H A P T E R 9 Agent Object 9-1

Agent Object Properties 9-1

Agent Statistics 9-3

Methods 9-13

Arguments Parameters 9-15

DisableAgentStatistics 9-15

DisableSkillGroupStatistics 9-16

EnableAgentStatistics 9-17

EnableSkillGroupStatistics 9-18

GetAgentState 9-19

GetAllProperties 9-20

GetElement 9-20

GetMonitoredAgent 9-20

GetMonitoredCall 9-21

GetNumProperties 9-22

GetPropertyName 9-22

GetPropertyType 9-22

GetSkillGroups 9-22

GetValue Methods 9-25

IsAgent 9-25

IsSupervisor 9-26

Login 9-26

Logout 9-29

MakeCall 9-31

MakeEmergencyCall 9-36

QueryAgentState 9-38

ReportBadCallLine 9-39

RequestAgentTeamList 9-40

RequestSupervisorAssist 9-41

SendChatMessage 9-42
xvi
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
SetAgentState 9-44

StartMonitoringAgent 9-46

StartMonitoringAgentTeam 9-47

StartMonitoringAllAgentTeams 9-48

StartMonitoringCall 9-49

StopMonitoringAgent 9-50

StopMonitoringAgentTeam 9-51

StopMonitoringAllAgentTeams 9-52

SuperviseCall 9-53

C H A P T E R 10 Call Object 10-1

Current Call Concept 10-1

Accessing ECC Variables 10-2

Retrieving ECC Variable Values 10-2

Adding ECC Values 10-4

Properties 10-5

Methods 10-8

Arguments Parameters 10-10

Alternate 10-10

Answer 10-11

Clear 10-13

ClearConnection 10-14

Conference 10-15

GetCallContext 10-17

GetCallData 10-19

Hold 10-20

MakeConsultCall 10-21

Reconnect 10-27

Retrieve 10-29
xvii
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
SendDTMFSignal 10-30

SetCallData 10-32

SingleStepConference 10-33

SingleStepTransfer 10-36

Snapshot 10-37

StartRecord 10-38

StopRecord 10-39

Transfer 10-40

C H A P T E R 11 SkillGroup Object 11-1

Properties 11-1

Statistics 11-2

Methods 11-21

DisableSkillGroupStatistics 11-22

DumpProperties 11-23

EnableSkillGroupStatistics 11-23

GetElement 11-24

GetValue Methods 11-24

IsValid 11-25

SetValue 11-25

C H A P T E R 12 Helper Classes 12-1

Arg Class 12-2

AddRef 12-3

Clone 12-4

CreateInstance 12-5

DumpArg 12-6

GetArgType (.NET only) 12-6

GetType 12-7
xviii
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
GetValue Methods 12-8

Release 12-10

SetValue 12-11

Arguments Class 12-13

Usage Notes 12-14

AddItem (C++, COM, VB only) 12-15

AddRef (C++ and COM only) 12-17

Clear 12-17

Clone 12-18

CreateInstance (C++ and COM only) 12-19

DumpArgs 12-20

GetElement Methods 12-21

Parameters 12-22

GetValue Methods 12-23

IsValid 12-26

NumElements 12-27

Release (C++ and COM only) 12-28

RemoveItem 12-28

SetElement (C++, COM, and VB only) 12-29

SetValue 12-30

CILRefArg Class (C++, Java, and .NET only) 12-33

GetType 12-33

GetUniqueObjectID (Java and .NET only) 12-34

GetValue 12-35

SetValue 12-35

CCtiOsException Class (C++, Java, and .NET only) 12-36

CCtiosException Constructor 12-36

GetCode 12-37

GetStatus 12-38

GetString 12-38
xix
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
What 12-39

CWaitObject Class 12-39

Methods 12-39

CreateWaitObject 12-40

DestroyWaitObject 12-40

DumpEventMask 12-40

GetMask 12-41

GetTriggerEvent 12-42

InMask 12-42

SetMask 12-43

WaitOnMultipleEvents 12-43

Logger Class (.NET and Java Only) 12-44

Methods 12-44

Logger() Constructor 12-45

GetTraceMask 12-46

SetTraceMask 12-46

AddLogListener 12-47

RemoveLogListener 12-47

Trace 12-48

LogWrapper Class (.NET and Java Only) 12-48

Methods 12-49

LogWrapper() Constructor 12-50

Return Values 12-50

LogWrapper(String filename) Constructor 12-51

Return Values 12-51

LogWrapper(string, int, int, int) Constructor 12-51

Dispose (.NET Only) 12-52

GetMaxDaysBeforeExpire (.NET Only) 12-53

SetMaxNumberFiles 12-53

GetMaxNumberFiles (.NET Only) 12-54
xx
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
SetMaxDaysBeforeExpire 12-55

ProcessConfigFile 12-55

C H A P T E R 13 SilentMonitorManager Object 13-1

Properties 13-2

Methods 13-3

Argument Parameter Rules 13-4

AcceptSilentMonitoring 13-4

GetIPPhoneInfo 13-6

GetSessionInfo 13-8

GetSMSessionList 13-10

IsMonitoredTarget 13-11

SetIPPhoneInfo 13-11

StartSilentMonitorRequest 13-13

StartSMMonitoredMode 13-15

StartSMMonitoringMode 13-17

StopSilentMonitorMode 13-18

StopSilentMonitorRequest 13-18

A P P E N D I X A CTI OS Keywords and Enumerated Types A-1

Keywords A-1

Java CIL Keywords A-2

.NET CIL Keywords A-2

Enumerated Types A-2

Java Interfaces A-4

A P P E N D I X B CTI OS Logging B-1

Creating CTI OS Client Logs (COM and C++) B-1

How to Install the Tracing Mechanism (COM and C++) B-2
xxi
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Contents
Setting Trace Levels (COM and C++) B-2

Configuring Tracing (COM and C++) B-2

Java CIL Logging Utilities B-3

ILogEvents B-4

LogEvent B-4

Logger B-4

LogEventsAdapter B-5

 Logging and Tracing (Java) B-6

Logging and Tracing (.NET) B-7

Using the Default Logging Mechanism B-7

Creating a Custom Logging Mechanism B-10

Configuring Tracing (Java and .NET) B-12

A P P E N D I X C Migrating From CTI OS 6.0 C-1

Introduction C-1

Migrating a C++ CIL application C-2

Migrating a COM CIL Application C-3

Migrating a C++ Application that uses COM CIL C-3

Migrating a Visual Basic 6.0 to use COM CIL C-4

Migrate to Visual Basic .NET and use .COM CIL C-5

Migrating a Visual Basic 6.0 to Use COM CIL C-7

Migrate to Visual Basic .NET and use .NET CIL C-7

Migrate to Visual Basic .NET and use CTIOS ActiveX Controls C-8

I N D E X
xxii
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

About This Guide

Purpose
This manual provides a brief overview of the Cisco CTI Object Server (CTI OS)
product, introduces programmers to developing CTI enabled applications with
CTI OS, and describes the syntax and usage for CTI OS methods and events.

Audience
This manual is for system integrators and programmers who want to use CTI OS
to integrate CTI applications with Cisco Contact Center software.

Conventions
This manual uses the following conventions.
xix
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

About This Guide
Organization
Organization
The manual is divided into the following chapters.

Format Example

Boldface type is used for user
entries, keys, buttons, and folder
and submenu names.

Choose Edit > Find from the ICM
Configure menu bar.

Italic type indicates one of the
following:

 • A newly introduced term

 • For emphasis

 • A generic syntax item that
you must replace with a
specific value

 • A title of a publication

 • A skill group is a collection of agents
who share similar skills.

 • Do not use the numerical naming
convention that is used in the
predefined templates (for example,
persvc01).

 • IF (condition, true-value, false-value)

 • For more information, see the Cisco
ICM Software Database Schema
Handbook.

An arrow (>) indicates an item
from a pull-down menu.

The Save command from the File menu is
referenced as File > Save.

Chapter Description

Chapter 1, “Introduction” Provides an overview of CTI and the CTI OS
Client Interface.

Chapter 2, “CTI OS Client
Interface Library
Architecture”

Discusses CTI OS architecture.

Chapter 3, “CIL Coding
Conventions”

Explains how to build an application using the
CTI OS libraries.

Chapter 4, “Building Your
Application”

Discusses how to build your custom CTI
application to use the CTI OS Client Interface
Library
xx
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

About This Guide
Other Publications
Other Publications
For additional information about Cisco Intelligent Contact Management (ICM)
software and Cisco Computer Telephony Integration (CTI) products, see the
Cisco web site listing ICM and CTI documentation.

Chapter 5, “CTI OS ActiveX
Controls”

Describes the CTI OS softphone controls and
explains how to use them in a VB or COM
container.

Chapter 6, “Event Interfaces
and Events”

Describes the CTI OS event interfaces.

Chapter 7, “CtiOs Object” Discusses features common to all CTI OS
objects derived from CtiOsObject.

Chapter 8, “Session Object” Describes the methods associated with the CTI
OS Session object.

Chapter 9, “Agent Object” Describes the methods associated with the CTI
OS Agent object.

Chapter 10, “Call Object” Describes the methods associated with the CTI
OS Call object.

Chapter 11, “SkillGroup
Object”

Describes the methods associated with the CTI
OS SkillGroup object.

Chapter 12, “Helper Classes” Describes the methods associated with the CTI
OS Arguments classes.

Chapter 13,
“SilentMonitorManager
Object”

Describes the methods associated with the CTI
OS Silent Monitor Manager object.

Appendix A, “CTI OS
Keywords and Enumerated
Types”

Discusses CTI OS keywords and enumerated
types.

Appendix B, “CTI OS
Logging”

Discusses a few issues related to CTI OS
logging.

Chapter Description
xxi
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

http://www.cisco.com/univercd/cc/td/doc/product/icm/index.htm

About This Guide
Obtaining Documentation
Obtaining Documentation
Cisco documentation and additional literature are available on Cisco.com. Cisco
also provides several ways to obtain technical assistance and other technical
resources. These sections explain how to obtain technical information from Cisco
Systems.

Cisco.com
You can access the most current Cisco documentation at this URL:

http://www.cisco.com/techsupport

You can access the Cisco website at this URL:

http://www.cisco.com

You can access international Cisco websites at this URL:

http://www.cisco.com/public/countries_languages.shtml

Product Documentation DVD
Cisco documentation and additional literature are available in the Product
Documentation DVD package, which may have shipped with your product. The
Product Documentation DVD is updated regularly and may be more current than
printed documentation.

The Product Documentation DVD is a comprehensive library of technical product
documentation on portable media. The DVD enables you to access multiple
versions of hardware and software installation, configuration, and command
guides for Cisco products and to view technical documentation in HTML. With
the DVD, you have access to the same documentation that is found on the Cisco
website without being connected to the Internet. Certain products also have .pdf
versions of the documentation available.

The Product Documentation DVD is available as a single unit or as a subscription.
Registered Cisco.com users (Cisco direct customers) can order a Product
Documentation DVD (product number DOC-DOCDVD=) from the Ordering tool
or Cisco Marketplace.
xxii
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

http://www.cisco.com/techsupport
http://www.cisco.com
http://www.cisco.com/public/countries_languages.shtml

About This Guide
Documentation Feedback
Cisco Ordering tool:

http://www.cisco.com/en/US/partner/ordering/

Cisco Marketplace:

http://www.cisco.com/go/marketplace/

Ordering Documentation
Beginning June 30, 2005, registered Cisco.com users may order Cisco
documentation at the Product Documentation Store in the Cisco Marketplace at
this URL:

http://www.cisco.com/go/marketplace/

Cisco will continue to support documentation orders using the Ordering tool:

 • Registered Cisco.com users (Cisco direct customers) can order
documentation from the Ordering tool:

http://www.cisco.com/en/US/partner/ordering/

 • Instructions for ordering documentation using the Ordering tool are at
this URL:

http://www.cisco.com/univercd/cc/td/doc/es_inpck/pdi.htm

 • Nonregistered Cisco.com users can order documentation through a local
account representative by calling Cisco Systems Corporate Headquarters
(California, USA) at 408 526-7208 or, elsewhere in North America, by
calling 1 800 553-NETS (6387).

Documentation Feedback
You can rate and provide feedback about Cisco technical documents by
completing the online feedback form that appears with the technical documents
on Cisco.com.

You can send comments about Cisco documentation to bug-doc@cisco.com.
xxiii
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

http://www.cisco.com/en/US/partner/ordering/
http://www.cisco.com/go/marketplace/
http://www.cisco.com/go/marketplace/
http://www.cisco.com/en/US/partner/ordering/
http://www.cisco.com/univercd/cc/td/doc/es_inpck/pdi.htm

About This Guide
Field Alerts and Field Notices
You can submit comments by using the response card (if present) behind the front
cover of your document or by writing to the following address:

Cisco Systems
Attn: Customer Document Ordering
170 West Tasman Drive
San Jose, CA 95134-9883

We appreciate your comments.

Field Alerts and Field Notices
Cisco products may be modified or key processes may be determined important.
These are announced through use of the Cisco Field Alert and Cisco Field Notice
mechanisms. You can register to receive Field Alerts and Field Notices through the
Product Alert Tool on Cisco.com. This tool enables you to create a profile to receive
announcements by selecting all products of interest. Log into www.cisco.com; then
access the tool at
http://tools.cisco.com/Support/PAT/do/ViewMyProfiles.do?local=en.

Cisco Product Security Overview
Cisco provides a free online Security Vulnerability Policy portal at this URL:

http://www.cisco.com/en/US/products/products_security_vulnerability_policy.h
tml

From this site, you can perform these tasks:

 • Report security vulnerabilities in Cisco products.

 • Obtain assistance with security incidents that involve Cisco products.

 • Register to receive security information from Cisco.

A current list of security advisories and notices for Cisco products is available at
this URL:

http://www.cisco.com/go/psirt

If you prefer to see advisories and notices as they are updated in real time, you
can access a Product Security Incident Response Team Really Simple Syndication
(PSIRT RSS) feed from this URL:
xxiv
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

http://www.cisco.com/en/US/products/products_security_vulnerability_policy.html
http://www.cisco.com/go/psirt
http://www.cisco.com/
http://tools.cisco.com/Support/PAT/do/ViewMyProfiles.do?local=en

About This Guide
Cisco Product Security Overview
http://www.cisco.com/en/US/products/products_psirt_rss_feed.html

Reporting Security Problems in Cisco Products
Cisco is committed to delivering secure products. We test our products internally
before we release them, and we strive to correct all vulnerabilities quickly. If you
think that you might have identified a vulnerability in a Cisco product, contact
PSIRT:

 • Emergencies — security-alert@cisco.com

An emergency is either a condition in which a system is under active attack
or a condition for which a severe and urgent security vulnerability should be
reported. All other conditions are considered nonemergencies.

 • Nonemergencies — psirt@cisco.com

In an emergency, you can also reach PSIRT by telephone:

 • 1 877 228-7302

 • 1 408 525-6532

Tip We encourage you to use Pretty Good Privacy (PGP) or a compatible product to
encrypt any sensitive information that you send to Cisco. PSIRT can work from
encrypted information that is compatible with PGP versions 2.x through 8.x.

Never use a revoked or an expired encryption key. The correct public key to use
in your correspondence with PSIRT is the one linked in the Contact Summary
section of the Security Vulnerability Policy page at this URL:

http://www.cisco.com/en/US/products/products_security_vulnerability_policy.h
tm

The link on this page has the current PGP key ID in use.
xxv
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

http://www.cisco.com/en/US/products/products_psirt_rss_feed.html
mailto:security-alert@cisco.com
mailto:psirt@cisco.com
http://www.cisco.com/en/US/products/products_security_vulnerability_policy.htm

About This Guide
Obtaining Technical Assistance
Obtaining Technical Assistance
Cisco Technical Support provides 24-hour-a-day award-winning technical
assistance. The Cisco Technical Support & Documentation website on Cisco.com
features extensive online support resources. In addition, if you have a valid Cisco
service contract, Cisco Technical Assistance Center (TAC) engineers provide
telephone support. If you do not have a valid Cisco service contract, contact your
reseller.

Cisco Technical Support & Documentation Website
The Cisco Technical Support & Documentation website provides online
documents and tools for troubleshooting and resolving technical issues with Cisco
products and technologies. The website is available 24 hours a day, at this URL:

http://www.cisco.com/techsupport

Access to all tools on the Cisco Technical Support & Documentation website
requires a Cisco.com user ID and password. If you have a valid service contract
but do not have a user ID or password, you can register at this URL:

http://tools.cisco.com/RPF/register/register.do

Note Use the Cisco Product Identification (CPI) tool to locate your product serial
number before submitting a web or phone request for service. You can access the
CPI tool from the Cisco Technical Support & Documentation website by clicking
the Tools & Resources link under Documentation & Tools. Choose Cisco
Product Identification Tool from the Alphabetical Index drop-down list, or click
the Cisco Product Identification Tool link under Alerts & RMAs. The CPI tool
offers three search options: by product ID or model name; by tree view; or for
certain products, by copying and pasting show command output. Search results
show an illustration of your product with the serial number label location
highlighted. Locate the serial number label on your product and record the
information before placing a service call.
xxvi
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

http://www.cisco.com/techsupport
http://tools.cisco.com/RPF/register/register.do

About This Guide
Obtaining Technical Assistance
Submitting a Service Request
Using the online TAC Service Request Tool is the fastest way to open S3 and S4
service requests. (S3 and S4 service requests are those in which your network is
minimally impaired or for which you require product information.) After you
describe your situation, the TAC Service Request Tool provides recommended
solutions. If your issue is not resolved using the recommended resources, your
service request is assigned to a Cisco engineer. The TAC Service Request Tool is
located at this URL:

http://www.cisco.com/techsupport/servicerequest

For S1 or S2 service requests or if you do not have Internet access, contact the
Cisco TAC by telephone. (S1 or S2 service requests are those in which your
production network is down or severely degraded.) Cisco engineers are assigned
immediately to S1 and S2 service requests to help keep your business operations
running smoothly.

To open a service request by telephone, use one of the following numbers:

Asia-Pacific: +61 2 8446 7411 (Australia: 1 800 805 227)
EMEA: +32 2 704 55 55
USA: 1 800 553-2447

For a complete list of Cisco TAC contacts, go to this URL:

http://www.cisco.com/techsupport/contacts

Definitions of Service Request Severity
To ensure that all service requests are reported in a standard format, Cisco has
established severity definitions.

Severity 1 (S1)—Your network is “down,” or there is a critical impact to your
business operations. You and Cisco will commit all necessary resources around
the clock to resolve the situation.

Severity 2 (S2)—Operation of an existing network is severely degraded, or
significant aspects of your business operation are negatively affected by
inadequate performance of Cisco products. You and Cisco will commit full-time
resources during normal business hours to resolve the situation.
xxvii
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

http://www.cisco.com/techsupport/servicerequest
http://www.cisco.com/techsupport/contacts

About This Guide
Obtaining Additional Publications and Information
Severity 3 (S3)—Operational performance of your network is impaired, but most
business operations remain functional. You and Cisco will commit resources
during normal business hours to restore service to satisfactory levels.

Severity 4 (S4)—You require information or assistance with Cisco product
capabilities, installation, or configuration. There is little or no effect on your
business operations.

Obtaining Additional Publications and Information
Information about Cisco products, technologies, and network solutions is
available from various online and printed sources.

 • Cisco Marketplace provides a variety of Cisco books, reference guides,
documentation, and logo merchandise. Visit Cisco Marketplace, the company
store, at this URL:

http://www.cisco.com/go/marketplace/

 • Cisco Press publishes a wide range of general networking, training and
certification titles. Both new and experienced users will benefit from these
publications. For current Cisco Press titles and other information, go to Cisco
Press at this URL:

http://www.ciscopress.com

 • Packet magazine is the Cisco Systems technical user magazine for
maximizing Internet and networking investments. Each quarter, Packet
delivers coverage of the latest industry trends, technology breakthroughs, and
Cisco products and solutions, as well as network deployment and
troubleshooting tips, configuration examples, customer case studies,
certification and training information, and links to scores of in-depth online
resources. You can access Packet magazine at this URL:

http://www.cisco.com/packet

 • iQ Magazine is the quarterly publication from Cisco Systems designed to
help growing companies learn how they can use technology to increase
revenue, streamline their business, and expand services. The publication
identifies the challenges facing these companies and the technologies to help
xxviii
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

http://www.cisco.com/go/marketplace/
http://www.ciscopress.com
http://www.cisco.com/packet

About This Guide
Obtaining Additional Publications and Information
solve them, using real-world case studies and business strategies to help
readers make sound technology investment decisions. You can access iQ
Magazine at this URL:

http://www.cisco.com/go/iqmagazine

or view the digital edition at this URL:

http://ciscoiq.texterity.com/ciscoiq/sample/

 • Internet Protocol Journal is a quarterly journal published by Cisco Systems
for engineering professionals involved in designing, developing, and
operating public and private internets and intranets. You can access the
Internet Protocol Journal at this URL:

http://www.cisco.com/ipj

 • Networking products offered by Cisco Systems, as well as customer support
services, can be obtained at this URL:

http://www.cisco.com/en/US/products/index.html

 • Networking Professionals Connection is an interactive website for
networking professionals to share questions, suggestions, and information
about networking products and technologies with Cisco experts and other
networking professionals. Join a discussion at this URL:

http://www.cisco.com/discuss/networking

 • World-class networking training is available from Cisco. You can view
current offerings at this URL:

http://www.cisco.com/en/US/learning/index.html
xxix
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

http://www.cisco.com/go/iqmagazine
http://ciscoiq.texterity.com/ciscoiq/sample/
http://www.cisco.com/ipj
http://www.cisco.com/en/US/products/index.html
http://www.cisco.com/discuss/networking
http://www.cisco.com/en/US/learning/index.html

About This Guide
Obtaining Additional Publications and Information
xxx
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Ente

C H A P T E R 1

Introduction

This chapter provides an introduction to Computer Telephony Integration (CTI)
and describes how CTI can enhance the value of contact center applications. This
chapter also introduces the CTI OS product and discusses the advantages of using
CTI OS to develop custom CTI enabled applications.

Introduction to CTI
The workflow of a modern contact center is based on two main areas: the media
for communicating with the customer and the platform for servicing customer
requests.

CTI is the integration of the communications media (i.e. phone, email, or web)
with the customer service platform (i.e. customer databases, transaction
processing systems, or CRM (customer relationship management) software
packages).

Integrating communications media with the customer service platform helps
agents to service customers better and faster in two ways. First, it enables the
agent to leverage the information and events provided by the media to direct his
workflow. Second, it increases the depth and breadth of customer information
presented to the agent when the customer’s contact arrives at the workstation.
1-1
rprise & Hosted Editions Release 7.1(1)

Chapter 1 Introduction
What is a CTI-Enabled Application?
What is a CTI-Enabled Application?
A CTI-enabled application is one in which the software used by the agent to
service a customer request is driven by information generated by the presentation
of the customer contact.

Screen Pop
The most common CTI application is a screen pop. In a screen pop, the customer
service platform is provided with customer information at the arrival of a phone
call and begins processing the customer’s transaction at the same time as the
communication begins between the customer and the agent. This transfer of
customer information is called the call context information: a rich set of
customer-specific data that travels with the call throughout the enterprise.

For example, a screen pop application for a cellular telephone company might be
triggered based on the arrival of a phone call. It uses the customer ANI (automated
number identification, or calling line ID) to do a database look up to retrieve the
customer’s account information and displays this customer record for the agent.
By the time the agent can say “Thank you for calling ABC Telephony Company,”
the account record is on his screen and he is ready to service the customer’s
request.

Agent State Control
Similar to a screen pop, CTI application control of agent state is a way to improve
the agent’s workflow by integrating the service delivery platform with the
communications media. A CTI application enabled for agent state can set the
agent’s current work state according to the type of work being performed.

For example, a sales application might automatically send an agent to a wrap-up
or after-call work state when the customer contact terminates. The agent could
then enter wrap up data about that transaction or customer inquiry and (subject to
a timer) have his state changed automatically back to available when the wrap up
work has been completed.
1-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 1 Introduction
Leveraging CTI Application Event Flow
Third-Party Call Control
The most advanced CTI integration projects seek a total integration of the
customer service platform with the communications media. In third-party call
control applications, the actual control over the teleset or other media is initiated
via the software application, and coordinated with application screens or views.

For example, a financial services application might perform the transfer of a
phone call to a speed-dial number designated by the application itself. In this kind
of scenario, the agent could click one button to determine the appropriate
destination for the transfer, save the application’s customer context, and transfer
the call to the other agent.

Leveraging CTI Application Event Flow
The first step to developing a CTI-enabled application is to understand the events
and requests that are at play within the CTI environment. Asynchronous events
are messages sent to applications that indicate an event to which the application
can respond (for example, CallBeginEvent). Requests are the mechanism that the
application uses to request that a desired behavior happen (for example,
TransferCall).

Asynchronous Events
The CTI environment is one of diverse servers and applications communicating
over a network. This naturally leads to asynchronous, or unsolicited events –
events that arrive based on some stimulus external to the user’s application. The
main source of events in the CTI environment is the communications media.

Figure 1-1 depicts the stages of a typical inbound telephone call and its associated
events:
1-3
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 1 Introduction
Leveraging CTI Application Event Flow
Figure 1-1 Typical Inbound Call Events Flow

The following events are generated, based on the state of the call:

 • OnCallBegin event indicates that the call has entered the setup phase.

 • OnCallDelivered event is generated when the call starts ringing.

 • OnCallEstablished event is generated when the call is answered.

 • OnCallCleared event is generated when the voice connection is terminated
(e.g. call hung up).

 • OnCallEnd event is generated when the logical call appearance (including
call data) is complete.

In addition to the events and states shown in Figure 1-1, the following are typical
call events used for CTI applications:

 • OnCallHeld event is generated when the call transitions from the active to
held state.

 • OnCallRetrieved event is generated when the call is removed from hold.

 • OnCallTransferred event indicates that the call has been transferred to
another party.

 • OnCallConferenced event indicates that a new party has been added to the
call.

The foregoing is only a brief sample of the events available via CTI OS. The
complete set of events available for CTI developers is detailed in later chapters in
this guide.

Request-Response Paradigm
In addition to being able to respond to asynchronous events, a CTI enabled
application can make programmatic requests for services via the CTI interface.
Specifically, the CTI application uses the request-response mechanism to perform
agent state and third-party call control, and to set call context data.

CALL
BEGIN

CALL
DELIVERED

CALL
ESTABLISHED
(answered)

CALL
CLEARED CALL E

TALKING WRAP UPRINGINGCALL SETUP
1-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 1 Introduction
Overview of CTI OS
The typical request-response flow for CTI uses the model shown in Figure 1-2:

Figure 1-2 Sample Request-Response Message Flow.

A request generated by the CTI-enabled application (CLIENT) is sent to the CTI
service (SERVER), and a response message (CONF) is generated to indicate that
the request has been received. In most cases if the request is successful, a
follow-on event will be received indicating that the desired behavior has occurred.
Detailed descriptions of this kind of request-response-event message flow are
detailed in later chapters in this guide.

Overview of CTI OS
The Computer Telephony Integration Object Server (CTI OS) is Cisco’s next
generation customer contact integration platform. CTI OS combines a powerful,
feature-rich server and an object-oriented software development toolkit to enable
rapid development and deployment of complex CTI applications. Together with

CLIENT SERVER

REQUEST

CONF

EVENT
1-5
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 1 Introduction
Overview of CTI OS
the Cisco CTI Server Interface, CTI OS and Client Interface Library (CIL) create
a high performance, scalable, fault-tolerant three-tiered CTI architecture, as
illustrated in Figure 1-3.

Figure 1-3 CTI OS Three-Tiered Architecture Topology

The CTI OS application architecture employs three tiers:

 • The CIL is the first tier, providing an application-level interface to
developers.

 • The CTI OS Server is the second tier, providing the bulk of the event and
request processing and enabling the object services of the CTI OS system.

 • The Cisco CTI Server is the third tier, providing the event source and the
back-end handling of telephony requests.

Advantages of CTI OS as a CTI Development Interface
CTI OS brings several major advances to developing custom CTI integration
solutions. The CIL provides an object-oriented and event driven application
programming interface (API), while the CTI OS server does all the ‘heavy-lifting’
of the CTI integration: updating call context information, determining which
buttons to enable on softphones, providing easy access to supervisor features, and
automatically recovering from failover scenarios.

82
97

0

PBX/ACD

Cisco CTI OS Server

Site Telephone
Network

Ethernet

Cisco Peripheral Gateway
Cisco CTI Server
1-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 1 Introduction
Overview of CTI OS
 • Rapid integration. Developing CTI applications with CTI OS is
significantly easier and faster than any previously available Cisco CTI
integration platform. The same object oriented interface is used across
programming languages, enabling rapid integrations in .NET, and C++,
Visual Basic, or any Microsoft COM compliant container environment. CTI
OS enables developers to create a screen pop application in as little as five
minutes. The only custom-development effort required is within the
homegrown application to which CTI is being added.

 • Complex solutions made simple. CTI OS enables complex server-to-server
integrations and multiple agent monitoring-type applications. The CIL
provides a single object-oriented interface that can be used in two modes:
agent mode and monitor mode. See Chapter 2, “CTI OS Client Interface
Library Architecture” for an explanation of these two modes.

 • Fault tolerant. CTI OS is built upon the ICM NodeManager fault-tolerance
platform, whichautomatically detects process failure and restarts the process,
enabling work to continue. Upon recovery from a failure, CTI OS initiates a
complete, system-wide snapshot of all agents, calls, and supervisors and
propagates updates to all client-side objects.

Key Benefits of CTI OS for CTI Application Developers
The CTI OS Client Interface Library (CIL) provides programmers with the tools
required to rapidly develop high-quality CTI –enabled applications, taking
advantage of the rich features of the CTI OS server. Every feature of CTI OS was
designed with ease of integration in mind, to remove the traditional barriers to
entry for CTI integrations.

 • Object-oriented interactions. CTI OS provides an object-oriented CTI
interface by defining objects for all call center interactions. Programmers
interface directly with Session, Agent, SkillGroup, and Call objects to
perform all functions. CIL objects are thin proxies for the server-side objects,
where all the ‘heavy-lifting’ is done. The Session object manages all objects
within the CIL. A UniqueObjectID identifies each object. Programmers can
access an object by its UniqueObjectID or by iterating through the object
collections.

 • Connection and session management. The CTI OS CIL provides
out-of-the-box connection and session management with the CTI OS Server,
hiding all of the details of the TCP/IP sockets connection. The CIL also
1-7
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 1 Introduction
Overview of CTI OS
provides out-of-the-box failover recovery: upon recovery from a failure, the
CIL will automatically reconnect to another CTI OS (or reconnect to the same
CTI OS after restart), reestablish the session, and recover all objects for that
session.

 • All parameters are key-value pairs. The CTI OS CIL provides helper
classes to treat all event and request parameters as simply a set of key-value
pairs. All properties on the CTI OS objects are accessible by name via a
simple Value = GetValue(“key”) mechanism. Client programmers can add
values of any type to the CTI OS Arguments structure, using the enumerated
CTI OS keywords, or their own string keywords (for example,
AddItem(“DialedNumber”, “1234”)). This provides for future enhancement
of the interface without requiring any changes to the method signatures.

 • Simple event subscription model. The CTI OS CIL implements a
publisher-subscriber design pattern to enable easy subscription to event
interfaces. Programmers can subscribe to the appropriate event interface that
suits their needs, or use the IAllInOne interface to subscribe for all events.
C++ and COM contain subclassable event adapter classes. These classes
enable programmers to subscribe to event interfaces; they only add minimal
custom code for the events they use and no code at all for events they do not
use.

Illustrative Code Fragments
Throughout this manual, illustrative code fragments are provided both to clarify
usage and as examples. These fragments are written in several languages,
including C++ and Visual Basic (VB). Although .NET (and therefore VB .NET)
is supported, note that the VB code fragments are written using VB 6 syntax.
1-8
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Ente

C H A P T E R 2

CTI OS Client Interface Library
Architecture

This chapter describes the architecture of the CTI OS Client Interface Library
(CIL). The CIL is the programmer’s interface into the CTI OS system.

Object Server Architecture
CTI OS is a Server-based integration solution, which enables all of the objects to
exist on the CTI OS server. The client-side objects, through which the developer
can interact with the CTI OS CIL, can be conceptually thought of as thin proxies
for server-side objects.

All objects are identified by a UniqueObjectID. The UniqueObjectID is the key
which is used to map a server-side object and the client-side proxy (or proxies)
for it. Requests made on a client-side object will be sent to the CTI OS Server,
and the corresponding server-side object will service the request (Figure 2-1).
2-1
rprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
Client Interface Library Architecture
Figure 2-1 CTIOS Object Server and Client Object Sharing

Client Interface Library Architecture
The Client Interface Library has a three-tiered architecture (Figure 2-2), which
implements the functionality provided to developers. The CIL architecture is
composed of the Connection layer, the Service Layer, and the Object Interface
Layer. The CIL architecture also includes the custom application, which is
developed by the customer to make use of the services provided by the Client
interface Library.

Figure 2-2 Client Interface Library Three-Tiered Architecture
2-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
Client Interface Library Architecture
Connection Layer
The Connection layer provides basic communication and connection recovery
facilities to the CIL. It creates the foundation, or bottom tier of the CIL’s layered
architecture, and decouples the higher-level event and message architecture from
the low-level communication link (TCP/IP sockets). The Connection layer sends
and receives sockets messages to the CTI OS Server, where it connects to a
server-side connection layer.

In addition to basic communication facilities, the connection layer provides fault
tolerance to the CIL by automatically detecting and recovering from a variety of
network failures. The Connection layer uses a heartbeat-by-exception
mechanism, sending heartbeats only when the connection has been silent for some
period of time, to detect network-level failures.

Service Layer
The Service layer sits between the connection layer and the Object Interface layer.
Its main purpose is to translate between the low-level network packets sent and
received by the connection layer and the high-level command and event messages
used in the Object Interface layer. The Service layer implements a generic
message serialization protocol which translates key-value pairs into a byte stream
for network transmission and deserializes the messages back to key-value pairs
on the receiving side. This generic serialization mechanism ensures
forward-compatibility, since future enhancements to the message set will not
require any changes at the Connection or Service layers.

A secondary purpose of the Service layer is to isolate the client from the network,
such that network issues do not block the client and vice versa. This is done via a
multi-threading model which allows user-program execution to continue without
having to ‘block’ on network message sending or receiving. This prevents client
applications from getting ‘stuck’ when a message is not immediately dispatched
across the network, and allows messages to be received from the network even if
the client application is temporarily blocked.
2-3
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
CIL Object Model
Object Interface Layer
The CTI Object Interface layer is the topmost layer on the CIL architecture. It
consists of the group of objects (classes) that enable application developers to
write robust applications for CTI in a short time. The framework can be extended
to accommodate special requirements by subclassing one or more of the CTI OS
object classes.

Custom Application
The custom application is the business application that is developed to integrate
with the CTI OS Client Interface Library. The custom application makes use of
the CIL in two ways. First, the CIL provides the object-based interface for
interacting with CTI OS, to send requests for agent and call control. Second, the
CIL provides an events subscription service, which the custom application will
take advantage of to receive events from CTI OS.

For example, a custom application would use the Agent object to send a
MakeCallRequest, and then receive a OnCallBeginEvent (and others) from the
CIL’s events interface(s).

CIL Object Model
The Client Interface Library’s Object Interface layer provides a set of objects that
create abstractions for all of the call center interactions supported. Client
programs interact with the CIL objects by making requests from the objects, and
querying the objects to retrieve properties. Figure 2-3 illustrates the CIL Object
Model Object Interfaces.
2-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
CIL Object Model
Figure 2-3 The CIL Object Model Object Interfaces

Session Object
The Session object is the main object in the CIL. It controls the logical session
between the client application and the CTIOS server. The Session object provides
the interface to the lower layers of the CIL architecture (the Service and
Connection layers), and also encapsulates the functions required to dispatch
messages to all of the other objects in the CIL.

The Session object provides object management (creation, collection
management, and deletion), and is the publisher for all CIL events. In addition,
the Session object provides automatic fault tolerance and failover recovery.

Session Modes

A Session object can be set to work in one of two modes, Agent Mode or Monitor
Mode, as explained in the following sections. The Session object maintains the
state of the Session mode, and recovers the session mode during failover. The
client application must set the session mode after it connects to the CTI OS
Server; the Session mode remains active until the connection to the CTI OS
Server is closed.
2-5
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
CIL Object Model
Agent Mode

A client connects to CTIOS Server in Agent Mode when it wants to receive events
for a specific agent or supervisor. Once agent mode has been set, the CIL receives
the events for the specified agent, as well as all call events for that agent’s calls.
If the agent is also configured as a Supervisor in ICM, then the CIL receives
events for all agents in the Supervisor’s team.

Monitor Mode

A client connects to the CTIOS Server in Monitor Mode when it wants to receive
a programmer-specified set of events, such as all agent state events. For details of
setting up a monitor mode connection, refer to the section in Chapter 4, “How to
Select Monitor Mode”.

For the complete interface specification of the Session object, see Chapter 8,
“Session Object.”

Agent Object
The Agent object provides an interface to Agent functionality, including changing
agent states and making calls. The agent object also provides access to many
properties, including agent statistics. Depending on the Session Mode, a CIL
application can have zero to many agent objects.

For the complete interface specification of the Agent object, see Chapter 9,
“Agent Object.”

Call Object
The Call object provides an interface to Call functionality, including call control
and accessing call data properties. Depending on the Session Mode, a CIL
application can have any number of call objects.

For the complete interface specification of the Call object, see Chapter 10, “Call
Object.”
2-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
CIL Object Model
SkillGroup Object
The SkillGroup object provides an interface to SkillGroup properties, specifically
skill group statistics. Depending on the Session Mode, a CIL application can have
zero to many SkillGroup objects.

For the complete interface specification of the SkillGroup object, see Chapter 11,
“SkillGroup Object.”

Object Creation and Lifetime
The Session object maintains a collection for each class of objects it manages (e.g.
Agents, Calls, SkillGroups, etc.).

Objects are created either by the programmer, or by the Session object as required
to support the event flow received from the CTIOS Server. In Agent Mode, the
programmer will create a single Agent object with which to login, whereas in
Monitor Mode, Agent objects are created as required by the event flow. Call and
SkillGroup objects are always created by the Session object.

An Agent, Call or SkillGroup object is created (by the Session) when the Session
receives an event for an object (identified by its UniqueObjectID) that is not yet
present at the CIL. This ensures that the CIL will always have the appropriate
collection of proxy objects, one for each object on the CTIOS Server that it is
using. When a new object is created, it is added to the Session object’s collection,
and is accessible from the Session via the GetValue mechanism. See Chapter 8,
“Session Object.”

Reference Counting
Object lifetime is controlled using reference counting. Reference counts
determine if an object is still in use; that is, if a pointer or reference to it still exists
in some collection or member variable. When all references to the object have
been released, the object is deleted.

An application or object that will hold a reference to a CIL object must add to its
reference count using the AddRef method. When the reference is no longer
required, the application or object holding that reference must decrement the
reference count using the Release() method. Reference counting is discussed
further in Chapter 7, “CtiOs Object.”
2-7
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
CIL Object Model
Note Reference counting must be done explicitly in C++ applications (COM or
non-COM). Visual Basic, Java, and the .NET frameworkwill perform automatic
reference counting.

Call Object Lifetime

Call objects are created at the CIL in response to events from the CTIOS server.
Usually, a Call object will be created in response to the OnCallBegin event, but
in certain failover recovery scenarios a Call object could be created in response
to an OnSnapshotCallConf event. Any call data available for the call is passed in
the event, and is used to set up the Call object’s initial state and properties.

The Call object will remain valid at the CIL until the receipt of the OnCallEnd
event. When the OnCallEnd event is received, the Session object will publish the
event to any subscribers to the event interfaces. Applications and objects must
release any remaining references to the Call object within their event handler for
OnCallEnd to allow the Call object to be properly deleted. When the Call object’s
OnEvent method returns after handling OnCallEnd, the Session will check the
reference count for zero; if any references remain, the call object will be removed
from the call object collection but will not be deleted until the last reference to it
is released.

Agent Object Lifetime

In Agent Mode, the client programmer must create an Agent object (which causes
its reference count to be incremented to one) and must pass it to the Session in the
SetAgent method.

Note In C++, the object must be created on the heap memory store so that it can exist
beyond the scope of the method creating it. For clients using other CILs, this is
handled automatically.

The Session will hold a reference to the Agent object as long as it is in use, but
the client programmer must release the last reference to the object to prevent a
memory leak.
2-8
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
CIL Object Model
In Monitor Mode objects are created at the CIL the first time the CIL receives an
event for that agent (e.g in an OnAgentStateChange event). When the Session
receives an event for an unrecognized Agent, that new Agent is added to the
Session’s collection of agents.

During application clean-up, the Session object will release its references to all
agents in the Agent collection. To ensure proper memory clean-up, the
programmer must release all reference to Agent objects.

SkillGroup Object Lifetime

A SkillGroup object is created at the CIL the first time an
OnNewSkillGroupStatisticsEvent event occurs for that SkillGroup. It is added to
the SkillGroup collection, and it is subsequently updated by follow-on
OnNewSkillGroupStatisticsEvent events.

During application clean-up, the Session object releases its references to all skill
groups in the SkillGroup collection. To ensure proper memory clean-up, the
programmer must release all reference to SkillGroup objects.

Methods that Call AddRef()

The following tables detail the various methods that call AddRef(). To prevent
memory leaks, C++ and COM application developers that call these methods in
their applications must be aware of the impact of these methods on the reference
count and must appropriately release the reference when no longer using the
object.:

Table 2-1 SessionLib (C++)

Object Name Method Name Explanation

CAgent GetSkillGroups(),

GetMonitoredCall()

The client application must call
Release() on the returned object
when the object is no longer
needed.

CILRefArg CreateInstance(),

GetValue()

The client application must call
Release() on the returned object
when the object is no longer
needed.
2-9
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
CIL Object Model
CILRefArg SetValue(),

operator=

These methods increment the
reference count on the passed in
object. When the CilRefArg is
deleted the reference count of the
enclosed object will be
decremented.

CCtiOsSession SetCurrentCall() This method increments the
reference count on the passed in
object. The previous "current"
call's reference count is
decremented. If an end call event
is received for the current call, its
reference count is decremented
one extra time.

CCtiOsSession DestroyWaitObject() This method call decrements the
reference count on the passed in
object.

CCtiOsSession CreateWaitObject() The client application must call
DestroyWaitObject() on the
returned object when the object is
no longer needed.

CCtiOsSession DestroySilentMonitor
Manager()

This method decrements the
reference count of the passed in
object.

CCtiOsSession CreateSilentMonitor
Manager()

The client application must call
DestroySilentMonitorManager ()
on the returned object when it is no
longer needed.

CCtiOsSession SetCurrentSilent
Monitor()

This method increments the
reference count on the passed in
object. The previous "current"
silent monitor's reference count is
decremented.

Table 2-1 SessionLib (C++)

Object Name Method Name Explanation
2-10
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
CIL Object Model
CCtiOsSession GetCurrentCall(),

GetCurrentSilent
MonitorManager(),

GetAllCalls(),

GetAllSkillGroups(),

GetAllAgents(),

GetCurrentAgent(),

GetValue(),

GetObjectFromObject
ID()

The client application must call
Release() on the returned object
when it is no longer needed.

CCtiOsSession SetAgent() This method increments the
reference count on the passed in
object. If the passed in object is
NULL, then this method
decrements the current agent
object's reference count.

CSilentMonitor
Manager

GetSessionInfo(),

GetIPPhoneInfo(),

GetSMSessionList()

The client application must call
Release() on the returned object
when it is no longer needed.

Table 2-1 SessionLib (C++)

Object Name Method Name Explanation
2-11
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
CIL Object Model
Table 2-2 CtiosClient.dll (COM)

Object Name Method Name Explanation

IAgent GetSkillGroups() This method increments the
reference count for every
SkillGroup object, adds them to a
safe array and then returns the safe
array.

IAgent GetMonitoredAgent(),

GetMonitoredCall()

The client application must call
Release() on the returned object
when it is no longer needed.

IAgent GetValue(),

GetValueArray(),

GetElement()

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

IAgent GetAllProperties() The client application must call
Release() on the returned object
(first argument) when it is no
longer needed.

ISkillGroup GetValue(),

GetValueArray(),

GetElement()

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

ISkillGroup GetAllProperties() The client application must call
Release() on the returned object
(first argument) when it is no
longer needed.

ICall GetCallContext(),

GetCallData()

The client application must call
Release() on the returned object
when it is no longer needed.

ICall GetValue(),

GetValueArray(),

GetElement()

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.
2-12
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
CIL Object Model
ICall GetAllProperties() The client application must call
Release() on the returned object
(first argument) when it is no
longer needed.

ISilentMonitorM
anager

SetMonitor() This method increments the
reference count of the passed in
object and decrements the
reference count of the previous
monitor.

ISilent
MonitorManager

GetMonitor() The client application must call
Release() on the returned object
when it is no longer needed.

ISilent
MonitorManager

GetSessionInfo(),

GetIPPhoneInfo(),

GetSMSessionList(),

GetValue(),

GetValueArray(),

GetElement()

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

ISilentMonitorM
anager

GetAllProperties() The client application must call
Release() on the returned object
(first argument) when it is no
longer needed.

ISession SetAgent() This method increments the
reference count on the passed in
object. If the passed in object is
NULL, then this method
decrements the current agent
object's reference count.

ISession GetCurrentAgent(),

GetCurrentCall()

The client application must call
Release() on the returned object
when it is no longer needed.

Table 2-2 CtiosClient.dll (COM)

Object Name Method Name Explanation
2-13
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
CIL Object Model
ISession GetAllCalls() This method increments the
reference count for every Call
object, adds them to a safe array
and then returns the safe array.

ISession GetAllAgents() This method increments the
reference count for every Agent
object, adds them to a safe array
and then returns the safe array.

ISession GetAllSkillGroups() This method increments the
reference count for every
SkillGroup object, adds them to a
safe array and then returns the safe
array.

ISession GetValue()

GetValueArray(),

GetElement()

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

ISession GetAllProperties() The client application must call
Release() on the returned object
(first argument) when it is no
longer needed.

ISession GetObjectFromObject
ID()

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

ISession CreateSilentMonitor
Manager()

The client application must call
DestroySilentMonitorManager()
on the returned object when it is no
longer needed.

Table 2-2 CtiosClient.dll (COM)

Object Name Method Name Explanation
2-14
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
CIL Object Model
ISession DestroySilentMonitor
Manager()

This method call decrements the
reference count on the passed in
object.

ISession GetCurrentSilent
MonitorManager()

The client application must call
Release() on the returned object
when it is no longer needed.

Table 2-3 CtiosComArguments.dll (COM)

Object Name Method Name Explanation

IArg Clone() The client application must call
Release() on the returned object
when it is no longer needed.

IArg GetValueArray() The client application must call
Release() on the returned object
when it is no longer needed.

IArg GetValue() If ARG_TYPE = ARG_ARRAY,
the client application must call
Release() on the returned object
when it is no longer needed.

IArguments GetValueArray(),

GetValue(),

GetElement()

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

IArguments Clone() The client application must call
Release() on the returned object
when it is no longer needed.

Table 2-2 CtiosClient.dll (COM)

Object Name Method Name Explanation
2-15
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
Where To Go From Here
Where To Go From Here
Subsequent chapters in this manual contain the following information:

 • For information about CIL coding conventions, see Chapter 3, “CIL Coding
Conventions.”

 • For information about building an application using the CIL, see Chapter 4,
“Building Your Application.”

Table 2-4 ArgumentsLib (C++)

Object Name Method Name Explanation

Arg CreateInstance(),

GetValueArray(),

operator=

The client application must call
Release() on the returned object
when it is no longer needed.

Arguments CreateInstance(),

Clone(),

GetValue(),

GetValueArg,

GetValueArray(),

GetElement(),

GetElementArg()

The client application must call
Release() on the returned object
when it is no longer needed.

Arguments SetValue() If the returned object is of type Arg
or of type Arguments, the client
application must call Release() on the
returned object when it is no longer
needed.

Arguments SetElement() If the returned object is of type Arg
or of type Arguments, the client
application must call Release() on the
returned object when it is no longer
needed.
2-16
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
Where To Go From Here
 • For a description and syntax of the CIL programming interfaces, see Chapters
8 through 13.
2-17
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 2 CTI OS Client Interface Library Architecture
Where To Go From Here
2-18
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Ente

C H A P T E R 3

CIL Coding Conventions

This chapter discusses coding conventions used in the CTI OS Client Interface
Library (CIL). Coding conventions are standard ways of performing common
tasks. While the rest of this document discusses the programming interfaces
available with the CIL, this chapter provides useful and practical explanation of
how to program with the CIL – the glue that brings everything together.

One of the design goals of the CTI OS CIL is to make programming as easy and
consistent as possible for client developers. As such, many design decisions about
the CIL interfaces were made in order to keep things simple, clear, and consistent
across various objects, methods, and programming environments.

This chapter discusses the following topics:

 • Data types

 • Asynchronous execution (error codes versus events)

 • Generic interfaces with the Arguments structure

 • Optional and reserved parameters

 • Accessing properties and parameters with GetValue

 • Adding parameters to requests with AddItem

 • Setting properties with SetValue

 • UniqueObjectIDs: how to identify objects

 • Obtaining an object from its UniqueObjectID

 • Using Button Enablement Masks

 • Methods that call AddRef()
3-1
rprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
CTIOS CIL Data Types
CTIOS CIL Data Types
The CTI OS Client Interface Library is designed to be a single interface, which
can be used across multiple languages and environments (e.g. C++, COM, Visual
Basic, Java, and .NET). However, each programming language has its own native
data types. Throughout this document, the interface parameters will be listed with
the following standardized data types:

 • STRING: This is a variable-length string variable. If a maximum length
exists, it is listed with the parameter description.

 • INT: This is a 32-bit wide integer.

 • UNSIGNED INT: This is a 32-bit wide unsigned integer.

 • SHORT: This is a 16-bit wide short integer.

 • UNSIGNED SHORT: This is a 16-bit wide unsigned short integer.

 • BOOL: This is a logical true or false variable. Different implementations will
use different sized variables to represent this type. In COM, the
VARIANT_BOOL is used. Tests of variables of this data type must be
against VARIANT_TRUE and VARIANT_FALSE and not simply against 0
or 1.

 • ARGUMENTS: This is a custom data structure used by CTI OS, which holds
a variable-length set of key-value pairs.

 • ARG: This is an individual element (value), which can be stored in an
ARGUMENTS structure.

Table 3-1 describes the appropriate language specific types to which the
documented type are associated.

Table 3-1 CTI OS CIL Data Type

Document
ed Data
Type STRING INT

UNSIGNED
INT

SHORT

UNSIGNED
SHORT BOOL

ARGUME
NTS

ARG

C++ Type

std::string
OR const
char

long
OR int

unsigned int short unsigned
short

bool Argumen
ts

Arg
3-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
Asynchronous Program Execution
Asynchronous Program Execution
Synchronous execution is the most common programming approach used by most
applications. In a synchronous execution mode, a method call will execute all of
the code required to complete the request and provide return values as well as
error codes. Client-server programming can be synchronous (the client
application will make a blocking request and will continue execution when the
request is completed) or asynchronous (the client application makes a request, and
continues processing immediately, with the result of the request to follow at a
later time).

CTI programming is unique in that requests are often serviced by third-party
servers or applications, such as a PBX/ACD in the contact center. The
asynchronous nature of CTI programming requires developers to note the
distinction between an error code and the response to a request. In non-CTI
programming, developers test the error codes (return values from method calls) to
determine whether a method request succeeded or failed. However in a distributed
architecture such as CTI OS, success or failure is often determined by some
external server or component such as the PBX/ACD.

The CTI OS Client Interface Library API specifies error codes, which are return
values for method calls. These error codes relate to the success or failure of the
method call, but not the success or failure of the underlying operation. By the
success of the method call, we mean that the parameters sent were of the correct

Visual
Basic 6.0
Type

String Long None Integer Integer Boolean Argumen
ts

Arg

COM Type

BSTR long
OR int

unsigned int short unsigned
short

VARIAN
T_BOOL

IArgume
nts *

IArg*

Java Type
String int long short int Boolean Argumen

ts
Arg

.NET Type

System.St
ring

System
.Int32

System.Int6
4

System.In
t16

System.Int32 System.
Boolean

Argumen
ts

Arg

Table 3-1 CTI OS CIL Data Type (continued)
3-3
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
CIL Error Codes
format, that internal memory allocations were successful, and that the request was
put on the send queue to be transmitted to the CTI OS Server. Generally, the CIL
error code returned from method calls will be CIL_OK, indicating that the method
call was made successfully. However, this does not indicate that the request was
actually serviced by the CTI OS Server or successfully completed at the
PBX/ACD.

To determine the success or failure of the underlying telephony operation
requested, the CTI programmer must wait for an event confirming the success or
failure of the request. To generalize the message flow model, most requests made
at the CTI OS CIL will be answered with a confirmation message and/or an event
message. See the object interface reference in Chapters 8-12 for details on each
particular request. This type of response is called asynchronous – it can arrive at
any time after the request is made, but typically requests are services in
sub-second timeframes.

For each method request in the programmer’s interface sections of this document,
the expected event sequence is described, so that programmers know which
events to expect. In the event of a request failure, an eControlFailureConf
message will be send to the client; the eControlFailureConf message will have a
parameter called MessageType indicating which request failed, and a parameter
called ErrorMessage, with a description of the failure cause.

For example: when sending a MakeCall request, the method will typically return
CIL_OK, which means that the method call was successful. If the underlying
make call request is successful, the CIL will receive several follow-on events,
such as eBeginCallEvent and eServiceInitiatedEvent. If the request fails, the CIL
will receive the eControlFailureConf message.

A common mistake: developers who have not previously programmed with
asynchronous events might mistake the error code returned from a method call for
the actual result of the request. The correct semantics are to interpret the error
code as being indicative of the result of the method call, and to interpret the
follow-on events to determine the actual result of the requested operation.

CIL Error Codes
Whenever a method call is invoked by a custom application using the CIL, an
error code is returned. The error codes returned only indicate success or failure of
the method call, as indicated in the previous section.
3-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
CIL Error Codes
The possible values of the error code returned from C++ and Java CIL methods
are defined in Table 3-2.

Note The numeric values listed in Table 3-2 are subject to change. It is recommended
that you use the error code enumerations to check a given error code, rather than
rely on a specific numeric value.

Table 3-2 CIL Error Codes

CIL Error Code
Numeric
Value Description

CIL_OK 1 The method succeeded.

CIL_FAIL 0 The method failed.

E_CTIOS_METHOD_NO_
IMPLEMENTED

-99 There is no implementation available for this method.

E_CTIOS_INVALID_
PROPERTY

-100 One or more properties are invalid.

E_CTIOS_MODE_CONFLICT -101 A conflict when setting session mode.

E_CTIOS_INVALID_
EVENTID

-102 The Event ID is not valid.

E_CTIOS_INVALID_
ARGUMENT

-103 The Argument is not valid.

E_CTIOS_INVALID_
SESSION

-104 The Session is not valid.

E_CTIOS_UNEXPECTED -105 An unexpected error has occurred.

E_CTIOS_OBJ_ALLOCATIO
N_FAILED

-106 There is not enough memory available and an creation of
CCtiOsObject failed.

E_CTIOS_ARRAYREF_
ALLOCATION_FAILED

-107 There is not enough memory available and an creation of
an array of references to objects of type CCtiOsObject
failed.

E_CTIOS_ARGUMENT_
ALLOCATION_FAILED

-108 There is not enough memory available and an creation of
an object of type Arguments failed.

E_CTIOS_TARGET_
OBJECT_ NOT_FOUND

-109 There are no CTI OS Objects capable of processing an
incoming event
3-5
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
CIL Error Codes
E_CTIOS_PROP_
ATTRIBUTES_ACCESS_
FAILED

-110 An error occurred while accessing a property's attributes,
System may be running out of memory.

E_CTIOS_INVALID_
OBJECT_TYPE

-111 The object type is not one of the following predefined
types CAgent, CCall, CSkillGroups, or CWaitObject.

E_CTIOS_INVALID_AGENT -112 No valid agent.

E_CTIOS_INVALID_CALL -113 No valid call.

E_CTIOS_IN_FAILOVER -114 The session is recovering from a connection failure and
had started the Fail Over procedure.

E_CTIOS_INVALID_
DESKTOP_TYPE

-115 Indicates that the desktop type specified in the request for
DeskSettings download is neither Agent or Supervisor.

E_CTIOS_MISSING_
ARGUMENT

-116 Missing a required argument.

E_CTIOS_CALL_NOT_ON_
HOLD

-117 Call is not on hold.

E_CTIOS_CALL_ALREADY_
ON_HOLD

-118 Call is already on hold.

E_CTIOS_CALL_NOT_
ALERTING

-119 Call is not in alert state, it can not be answered.

E_CTIOS_AGENT_NOT_
LOGIN

-120 Agent is not logged in.

E_CTIOS_INVALID_
METHOD_PARAMETER

-121 The input parameter is invalid.

E_CTIOS_UNKNOWN -122 The cause of this error is unknown.

E_CTIOS_OUT_OF_
MEMORY

-123 Failed to allocate new memory.

E_CTIOS_PORT_
UNAVAILABLE

-124 The specified port is not available for use.

Table 3-2 CIL Error Codes (continued)

CIL Error Code
Numeric
Value Description
3-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
CIL Error Codes
E_CTIOS_SM_SESSION_
TERMINATED_
ABNORMALLY

-125 The Silent Monitor session was terminated abnormally.

E_CTIOS_SM_REJECTED_
ALREADY_IN_SESSION

-126 The request was rejected because there is an active silent
monitor session in progress.

E_CTIOS_SM_PACKET_
SNIFFER_NOT_INSTALLED

-127 The packet sniffer is not present in the system; verify
installation.

E_CTIOS_PACKET_
SNIFFER_FAILED

-128 An error occurred in the packet sniffer.

E_CTIOS_SOCKET_CALL_
FAILED

-129 A CTI OS socket call failed.

E_CTIOS_MEDIA_
TERMINATION_NOT_
INSTALLED

-130 EVVBU Media Termination component in the system,
verify installation.

E_CTIOS_MT_UNKNOWN_
CODEC

-131 Specified CODEC is not supported.

E_CTIOS_MEDIA_
TERMINATION_FAILED

-132 An error occurred in the Media Termination Packet
Decoder.

E_CTIOS_SNIFFER_NO_
PACKETS_RECEIVED

-133 The Sniffer has not received any IP packets.

E_CTIOS_SNIFFER_
FAILED_TO_OPEN_DEVICE

-134 The Sniffer failed to open the networking device.

E_CTIOS_SNIFFER_
FAILED_TO_SET_FILTER

-135 The Sniffer failed when setting the packet filter.

E_CTIOS_ERROR_IN_
PACKET_FILTER

-136 The packet filter expression is incorrect.

E_CTIOS_INVALID_
MONITORED_IP_ADDRESS

-137 The IP Address specified for the monitored device (IP
Phone) is not valid.

E_CTIOS_INVALID_
SNIFFER_OBJECT

-138 Invalid Sniffer object.

Table 3-2 CIL Error Codes (continued)

CIL Error Code
Numeric
Value Description
3-7
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
CIL Error Codes
E_CTIOS_INVALID_
DECODER_OBJECT

-139 Invalid Decoder object.

E_CTIOS_NO_SM_
SESSION_IN_PROGRESS

-140 There are no Silent Monitor Sessions in progress.

E_CTIOS_INVALID_
SILENT_MONITOR_
SESSION

-141 The specified Silent Monitor session does not exist.

E_CTIOS_FAILED_
REMOVING_SILENT_
MONITOR_SESSION

-142 Silent Monitor Session was not removed from the
collection.

E_CTIOS_IP_PHONE_
INFORMATION_NOT_
AVAILABLE

-143 There is no information available about the IP Phone.

E_CTIOS_PEER_NOT_
ENABLED_FOR_SILENT_
MONITOR

-144 The peer application is not enabled for Silent Monitor

E_CTIOS_NOT_ENABLED_
FOR_SILENT_MONITOR

-145 This application is not enabled for Silent Monitor.

E_CTIOS_NO_PENDING_RE
QUEST

 -146 There are no pending requests to be processed.

E_CTIOS_ALREADY_IN_SE
SSION

-147 There is already an established session.

E_CTIOS_MODE_SET_ALRE
ADY

-148 The session mode has already been set.

E_CTIOS_MODE_NOT_SET -149 The session mode is not set yet.

E_CTIOS_INVALID_OBJECT
_STATE

-150 Indicates that the object is not in the correct state

E_CTIOS_COM_OBJ_
ALLOCATION_FAILED

-200 CoCreateInstance failed to create a COM object wrapper
for a CIL Object (Session, Agent, Call, Skill, etc.).

E_CTIOS_COM_
CORRUPTED_REGISTRY

-201 A COM component failed to access data from the registry.

Table 3-2 CIL Error Codes (continued)

CIL Error Code
Numeric
Value Description
3-8
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
CIL Error Codes
Note If a method that is supposed to trigger an event returns an error code, you need to
check this return value before continuing to wait for events. Depending on the
error code, the event you were waiting for may not be triggered.

E_CTIOS_COM_DIALPAD_
FAIL_TO_LOAD

-202 The Dial Pad common dialog was not created and
CoCreateInstance failed.

E_CTIOS_COM_CONV_
COMPTR_TO_CPPPTR_
FAILED

-203 Failed converting COM pointer to C++ pointer.

E_CTIOS_COM_NOT_
INITIALIZED

-204 The MS COM library is not initialized. Invoke
CoInitialize(...)

E_CTIOS_SESSION_
DISCONNECT_PENDING

-300 A disconnect is already pending.

E_CTIOS_SESSION_NOT_
CONNECTED

-301 The session is not connected.

E_CTIOS_SESSION_NOT_DI
SCONNECTED

-351 The call to Connect failed because the session is not in a
disconnected state. The session may be connected or a
previous call to Disconnect may not yet have completed.

E_CTIOS_AGENT_
ALREADY_IN_SESSION

-900 An object for this agent already exists in the session.

E_CTIOS_SET_AGENT_
SESSION_DISCONNECT_
REQUIRED

-901 Session must be disconnected before operation.

E_CTIOS_SERVICE_SEND_
MESSAGE_FAILED

-902 Could not send message. Session may not be connected.

E_CTIOS_CALL_ALREADY_
CURRENT_IN_SESSION

-903 An object for this call is already set as current in the
session.

E_CTIOS_LOGIN_
INCONSISTENT_
ARGUMENTS

-904 The AgentID and/or PeripheralID provided to a Login call
do not match the properties set on the Agent object when
SetAgent() was called.

Table 3-2 CIL Error Codes (continued)

CIL Error Code
Numeric
Value Description
3-9
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
COM Error Codes
COM Error Codes
For applications using the CTI OS CIL for COM, the Microsoft COM layer adds
a level of error detection and provides additional error codes, called HRESULTs.
For COM method calls in C++, the HRESULT is returned from the method call,
and indicates success or failure of the method call. The CIL error code is also
returned, but as an [out, retval] parameter. For example:

// COM Example in C++
int errorCode = 0;
HRESULT hr = pCall->Answer(&errorCode);
if (errorCode=CIL_FAILED)

printf(“An error has occurred while answering the call.”)

In Visual Basic, HRESULT values are hidden under the covers. When an error
occurs, a Visual Basic exception is thrown, which can be caught using the On
Error: construct. The CIL error code is returned as the result of the method call:

‘ VB example:
On Error GoTo Error_handler
Dim errorCode as Long

ErrorCode = pCall.Answer
If ErrorCode = CIL_FAILED
Debug.print “An error has occurred.”

The complete set of HRESULT values is defined by Microsoft in the header file
winerror.h. The most common HRESULT values that might be seen by CTI OS
developers are listed in Table 3-3:

Table 3-3 COM Error Codes

COM Error Code Numeric Value Description

S_OK 0x00000000 The method succeeded.

S_FALSE 0x00000001 The method succeeded, but something
unusual happened.

E_FAILED 0x80000008 The method failed.

REG_DB_E_
CLASSNOTREG

0x80040143 The class was not found in the registry.
You will need to run regsvr32.exe on the
DLL file to register it.
3-10
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
Generic Interfaces
Generic Interfaces
One of the main design goals of CTI OS was to enable future enhancements to the
CTI OS feature set without breaking existing interfaces. To accomplish this, a
parameter for almost every method and event will be an Arguments array
containing the actual parameters needed. Therefore, parameters may be added or
deleted in future versions without affecting the signature of the method or event.
This provides the benefit to developers that code developed to work with one
version of the CTI OS developer’s toolkit will work with future versions without
requiring any code changes on the client’s side (except to take advantage of new
features). For example, CTI OS will automatically send a new parameter in the
Arguments array for an event, without requiring an interface or library code
change. The dilemma of creating a generic interface is solved by using generic
mechanisms to send parameters with events and request, and to access properties.

Arguments
The CTI OS developer’s toolkit makes extensive use of a new data structure
(class) called Arguments. Arguments is a structure of key-value pairs that
supports a variable number of parameters and accepts any user-defined parameter
names. For any given event, the arguments structure allows the CTI OS Server to
send the CIL any new parameters without requiring client side changes. Similarly,
for any request, the programmer can send any new parameters, without any
changes to the underlying layers.

Example of using Arguments in a Visual Basic MakeCall request:

Dim args As New Arguments
args.AddItem "DialedNumber", dialthis.Text

If Not 0 = Len(callvar1.Text) Then
' set callvar1
args.AddItem "CallVariable1", callvar1.Text
End If

' send makecall request
m_Agent.MakeCall args, errorcode

Java example:

Arguments args = new Arguments();
args.SetValue(CtiOs_IkeywordIDs.CTIOS_DIALEDNUMBER, “12345”);
3-11
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
Generic Interfaces
args.SetValue(CtiOs_IkeywordIDs.CTIOS_CALLVARIABLE1, “MyData”);
int iRet = m_Agent.MakeCall(args);

The Arguments structure can store and retrieve all native C/C++, Visual Basic,
and .NET and Java types, as well as nested Arguments structures.

Accessing Properties and Parameters with GetValue
CTI OS makes extensive use of generic data abstraction. The CTI OS CIL objects,
as well as the Arguments structure, store all data by key-value pair. Properties and
data values in CTI OS are accessible through a generic mechanism called
GetValue. For a list of the different GetValue methods, see Chapter 7, “CtiOs
Object” or Chapter 12, “Helper Classes.” The GetValue mechanism provides for
the retrieval of any data element based on its name. This enables the future
enhancement of the data set provided for event parameters and object properties
without requiring any interface changes to support new parameters or properties.
GetValue supports use of string keywords, as shown in the following examples:

// C++
string sAgentID;
args.GetValueString(“AgentID”, &sAgentID);

‘Visual Basic
Dim sAgentID As String
sAgentID = args.GetValueString “AgentID”

//Java
String sID =
args.GetValueString(CtiOs_IkeywordIDs.CTIOS_AGENTID);
Integer IPeriph =
args.GetValueIntObj(CtiOs_IkeywordIDs.CTIOS_PERIPHERALID);

if (IPeriph == null)
// Error accessing Peripheral ID! Handle Error here
else

iPeriph = IPeriph.intValue();

CTI OS defines a set of well-known keywords for event parameters and
properties. The well-known keywords are of type string and are listed throughout
this document with the methods and events for which they are valid. The complete
set of valid keywords are listed in the C++ header file, ctioskeywords.h, and are
provided in the COM (Visual Basic) type library as well. Java CIL keywords are
listed in the Javadoc in the description of the CtiOs_IKeywordIDs interface.
3-12
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
UniqueObjectID
Setting Object Properties and Request Parameters with SetValue
The CIL also provides an extensible mechanism to set properties on CTI OS
Client Interface Objects. The SetValue mechanism, available on the CIL Interface
Objects (as well as the CTI OS Arguments class), enables setting properties of any
known type to the object as a key-value pair.

SetValue, similar to GetValue and AddItem, supports string keywords and
enumerated names:

// C++
Agent a;
a.SetValue(“AgentID”, “22866”);
a.SetValue(CTIOS_AGENTID, “22866”); // alternative
a.SetValue(ekwAgentID, “22866”); // alternative

‘Visual Basic
Dim a As Agent
a.SetValue “AgentID”, “22866”

//Java. Note use of the CTIOS_AGENTID version of keywords.
String sAgentID = “22866”;
Args.SetValue(“AgentID”, sAgentID);
Args.SetValue(CtiOs_IkeywordIDs.CTIOS_AGENTID, sAgentID); //
alternative
Args.SetValue(ekwAgentID, sAgentID);

The complete syntax and usage of the GetValue, AddItem, and SetValue methods
is detailed in Chapter 7, “CtiOs Object.” The Arguments structure is detailed in
Chapter 12, “Helper Classes.”

UniqueObjectID
The CTI OS Server creates and manages the CTI OS objects, representing all
interactions for the contact center. The CTI OS Server and CIL use the
UniqueObjectID field to match up a CTI OS object on the CIL with the
corresponding object on the Server.

The UniqueObjectID is a variable-length string which can uniquely identify the
object within the current context of the CTI OS Server and the ICM Enterprise
and CTI Interlink Advanced. The UniqueObjectID is composed of an object type
(e.g. call, agent, skillgroup, etc.), and two or more additional identifying fields.
Table 3-4 explains the composition of the UniqueObjectID.
3-13
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
UniqueObjectID
Note The CTI OS UniqueObjectID is not the same as the ICM globally unique 64 bit
key used in the ICM historical databases (herein called the
ICMEnterpriseUniqueID), which exists only for calls. The
ICMEnterpriseUniqueID stays with the call even when the call is transferred
between call center sites, whereas the UniqueObjectID for a call is specific to its
site (by PeripheralID, ConnectionCallID, and ConnectionDeviceID).

Table 3-4 UniqueObjectID Components

Object Type
Sample
UniqueObjectID Explanation

Call Object call.5000.202.23901 The call object is uniquely identified
by its PeripheralID (5000, generated
by ICM), ConnectionCallID (202,
generated by the PBX/ACD), and its
ConnectionDeviceID (23901,
generated by the PBX/ACD).

Agent Object agent.5000.22866 The agent object is uniquely
identified by its PeripheralID (5000,
generated by ICM), and its agent ID.

Device Object
(for events only;
no CIL object)

device.5000.23901 The device object is uniquely
identified by its PeripheralID (5000,
generated by ICM), and its
instrument number (configured by
the PBX/ACD).

SkillGroup
Object

skillgroup.5000.77 The skill group object is uniquely
identified by its PeripheralID (5000,
generated by ICM), and its
SkillGroupNumber (configured by
the PBX/ACD).

Team Object
(for events only;
no CIL object)

team.5000.5001 The team object is uniquely
identified by its PeripheralID (5000,
generated by ICM), and its TeamID
(5001, also generated by ICM).
3-14
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
Obtaining Objects from UniqueObjectIDs
The ICMEnterpriseUniqueID in CTI OS takes the form of a variable-length string
with the form

“icm.routercallkeyday.routercallkeycallid”

where routercallkeyday is the field Day in the ICM Route_Call_Detail and
Termination_Call_Detail tables, and routercallkeycallid is the field
RouterCallKey in the ICM Route_Call_Detail and Termination_Call_Detail
tables.

The CTI OS server enables certain types of monitor mode applications that track
the pre-call notification event (eTranslationRouteEvent or eAgentPrecallEvent)
and seek to match the call data with the arrival of an eCallBeginEvent.

To do so, the application will receive the pre-call notification (for calls routed by
ICM (either pre-route, post-route, or translation route), and create a record
(object) using the ICMEnterpriseUniqueID field as the with a unique key. Later,
when the call arrives at the ACD, and is queued or targeted (by the ACD) for a
specific agent, the application can match the saved record (object) with the
incoming call by the ICMEnterpriseUniqueID field. The following events will
contain the ICMEnterpriseUniqueID that can be used to associate a call with the
saved call information:

 • eCallBeginEvent

 • eCallDataUpdateEvent

 • eSnapshotCallConf

 • eCallEndEvent

Obtaining Objects from UniqueObjectIDs
Client applications written to take advantage of the CIL can use the
UniqueObjectID to obtain a pointer (in C++ or COM for C++) or a reference (in
other languages) to the underlying object.

The CIL Session object provides easy access to the object collections via several
methods, including GetObjectFromObjectID. GetObjectFromObjectID takes as a
parameter the string UniqueObjectID of the desired object, and returns a pointer
to the object. Since this mechanism is generic, and does not contain specific
information about the object type retrieved, the pointer (or reference) returned is
a pointer or reference to the base class: a CCtiosObject* in C++, an Object in
Visual Basic, an IDispatch* in COM for C++, or CtiOsObject in .NET and Java.
3-15
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
Using Button Enablement Masks
Note The GetObjectFromObjectID method will perform an AddRef() on the pointer
before it is returned to the programmer.

C++ example:

string sUniqueObjectID = “call.5000.101.23901”;
Ccall * pCall = NULL;
m_pSession->GetObjectFromObjectID(sUniqueObjectID,
 (CCtiOsObject**)&pCall);

pCall->Clear();
pCall->Release(); // release our reference to this object
pCall = NULL;

Java example:

String sUID = “call.5000.101.23901”;
Call rCall = (Call) m_Session.GetObjectFromObjectID(sUID);

Using Button Enablement Masks
The CTI OS Server provides a rich object-level interface to the CTI interactions
of the contact center. One of the features the CTI OS Server provides is to
evaluate all of the telephony events, and map them to the features permitted by
the Cisco CallManager implementation. The CTI OS Server provides a
peripheral-independent mechanism for clients to determine which requests are
valid at any given time by using a bitmask to indicate which requests are
permitted.

For example, the only time when it is valid to answer a call is when the
ENABLE_ANSWER bit in the enablement mask is set to the on position. The
following C++ example depicts this case:

void EventSink::OnCallDeliveredEvent(Arguments& args)
{

unsigned int unBitMask = 0;
if (args.IsValid(“EnablementMask”))
{

args.GetValueInt(“EnablementMask”, & unBitMask)
//do bitwise comparison
If(unBitMask & ENABLE_ANSWER)

m_AnswerButton.Enable();
}

3-16
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
Using Button Enablement Masks
}

Visual Basic 6.0 example:

Public Sub m_Session_OnCallDeliveredEvent(ByVal pArguments as
CTIOSClientLib.Arguments)

Dim nBitMask as Integer

If pArguments.IsValid “EnablementMask” Then
nBitMask = pArguments.GetValueInt “EnablementMask”

End If

‘ do bitwise comparison
If nBitMask And ENABLE_ANSWER Then

m_AnswerButton.Enable
End If

End Sub

Java example:

void OnCallDeliveredEvent(Arguments args)
{
Long LMask =
args.GetValueUIntObj(CtiOs_IKeywordIDs.CTIOS_ENABLEMENTMASK);
if (null!=LMask)
{

long lMask = LMask.longValue();
if ((lMask & CtiOs_Enums.ButtonEnablement.ENABLE_ANSWER) == 0)

m_AnswerButton.setEnabled(false);
else

m_AnswerButton.setEnabled(true);
}

The advantage of using this approach is that all of the peripheral-specific details
of enabling and disabling buttons is determined in a central location – at the CTI
OS Server. This allows future new features to be enabled, and software bugs to be
corrected in a central location, which is a great benefit for deploying future
releases.

Warning The button enablement feature is intended to be used in agent mode
applications and not for monitor mode applications.
3-17
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 3 CIL Coding Conventions
Using Button Enablement Masks
For any given event, the CTI OS Server calculates the appropriate button
enablement bitmask, and sends it to the CIL with the event parameters. The button
enablement bit masks are discussed in detail in Chapter 6, “Event Interfaces and
Events.” You can use these masks to write a custom softphone-type application
without writing any custom code to enable and disable buttons. This is also the
approach used internally for the CTI OS ActiveX softphone controls.
3-18
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Ente

C H A P T E R 4

Building Your Application

This chapter discusses how to build your custom CTI application to use the CTI
OS Client Interface Library. Specifically, this chapter will help translate the
choice of programming language and environment into a set of steps you will need
to take to be able to reference CTI OS CIL components in your application and to
be able to compile (and, if necessary link) your application.

This chapter is organized in sections according to the programming language and
interface you will be using:

 • ActiveX Controls. This section covers using the CTI OS ActiveX controls in
a COM container such as Visual Basic.

 • COM CIL in Visual Basic 6.0. This section covers the steps required to
reference the CIL’s COM components in a Microsoft Visual Basic
application.

 • COM CIL in C++. This section covers the steps required to use the CIL’s
COM components in a Microsoft Visual C++ application.

 • C++ CIL using static libraries. This section covers the steps required to
reference the CIL’s C++ classes in your application, and how to link the C++
static library files into a Microsoft Visual C++ application.

 • Java CIL libraries. This section covers considerations for installing and
using the Java CIL libraries.

 • .NET CIL Class libraries. This section covers the steps required to reference
the .NET CIL components in a C# and Visual Basic .NET project files.
4-1
rprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Setting Up Your Environment for .NET
Setting Up Your Environment for .NET
Cisco CTI OS Toolkit 7.1(1) introduces support for application development
targeting the Microsoft .NET Framework 1.1 (Service Pack 1 inclusive) and
Microsoft Visual Studio .NET 2003. Cisco CTI OS Toolkit 7.1(1) provides a
native .NET class library (.NET CIL) and runtime callable wrappers for COM CIL
and the CTI OS ActiveX controls.

Note The .NET CIL has not been validated to work with .NET Framework 2.0 nor
Microsoft Visual Studio .NET 2005. Therefore, these platforms are unsupported
in CTI OS Release 7.1(1).

The .NET CIL and the runtime callable wrappers (RCWs) are installed in the
Global Assembly Cache (GAC) by the setup program such that all the components
are available to any of the sample included in the toolkit and any new application
in development. In the recommended environment settings for building .NET
applications using the CTI OS toolkit, however, there are additional configuration
steps for integration with the development environment.

Integrating with Microsoft Visual Studio .NET 2003
In order to access the .NET CIL and the RCWs directly from Visual Studio. NET
2003 you need to add the following configuration to your environment.

Adding CTIOS Toolkit 7.1(1) Components to the “Add Reference”
Dialog Box

In Visual Studio .NET 2003 you have the ability to select class libraries and
assemblies from the .NET tab of the “Add Reference Dialog”. This facilitates the
development process and always allows you to use the correct version of the
components.

In order to enable the .NET CIL class libraries to appear on the Add References
dialog, follow the steps described in:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbt
skaddingremovingreferences.asp
4-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Setting Up Your Environment for .NET
Add a new key named CiscoCtiOsDotNetCil under

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\7.X\AssemblyFolders

The Default value should be set to the full qualified path of the location on which
.NET CIL was installed. For example

D:\Program Files\Cisco Systems\CTIOS Client\CTIOS Toolkit\dotNet
CIL\Class Libraries

Note 7.X should be the actual version of Microsoft Visual Studio .NET 2003 you have
installed

Also, to enable the Cisco CTI OS RCWs, repeat the steps described before only
this time Add a new key named CiscoCtiOsRCWs under

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\7.X\AssemblyFolders

The Default value should be set to the full qualified path of the location on which
the RCWs were installed. For example

D:\Program Files\Cisco Systems\CTIOS Client\CTIOS Toolkit\Win32
CIL\.NETInterops

Note 7.X should be the actual version of Microsoft Visual Studio .NET 2003 you have
installed

Adding Cisco CTI OS ActiveX 7.1(1) Controls to the Toolbox
The Visual Studio .NET 2003 IDE allow visual editing of Windows Forms based
applications toolbox of visual components available. Since Windows Forms
applications are native, the visual components are also native. However, it still is
possible to use ActiveX controls and they can also be included in the toolbox.

In order to use the Cisco CTIOS ActiveX 7.1(1) Controls in Visual Studio .NET
2003, it is necessary to configure the Cisco CTI OS RCWs as described in the
previous section add to the Form Editor Toolbox:

1. From Visual Studio’s View menu make sure to select the “Add/Remove
Toolbox Items…” command
4-3
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Integrating your Application with CTI OS via the CIL
2. From the “Customize Toolbox” dialog box select the “.NET Framework
Components” tab.

Warning Never select the COM Components tab from the “Customize Toolbox” dialog box
and never select the CTI OS ActiveX controls. Doing this will cause Microsoft
Visual Studio .NET 2003 to automatically generate a set of private RCWs that
are not optimized nor approved by Cisco and your application will probably
have an unexpected behavior that could lead to application failure.

3. From the list select the CTI OS RCW that corresponds to the CTIOS ActiveX
Control you want to add to the toolbox. For example, for the Agent State
Control select the “AxAgentStateCtl”

4. To add more CTIOS ActiveX controls repeat steps 1 to 3.

Integrating your Application with CTI OS via the CIL
Creating an integration between your application and CTI OS via the CIL is fairly
straightforward. The first step is to articulate the desired behavior, and to create
a complete design specification for the integration.

Planning and Designing Your Integration
Good design depends upon understanding how CTI will fit into your application
and work flow. Your requirements analysis and design process should address the
following points, as they relate to your specific application:

 • Start with the call flow. What kind of call processing is done before calls are
targeted for a specific skill? Determine how CTI data can be collected from
the caller before the call arrives at an agent.

 • Study the agent’s workflow. What are the points where CTI will be able to
make the workflow easier and faster? Build a business case for the CTI
integration.

 • Evaluate what will CTI do for your application. A good approach is to
make a list in order of priority (e.g. screen pop, then call control) and then
design and implement features in that order.
4-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Integrating your Application with CTI OS via the CIL
 • Design how CTI should work within your application. What are the
interaction points? Get specific as to which screen will do the interacting, and
which data values should be sent between your application and the CTI OS
platform.

 • Determine when the application should connect to the CTI OS Server.
Some applications will be server-type integrations that will connect at
startup, specify a monitor-mode event filter, and stay connected permanently.
Agent-mode applications will connect up when a specific agent begins his or
her work shift.

 • Clean up when you’re done. When and how does the application stop? Some
applications will stay up and running permanently, while others will have a
defined runtime, such as the agent’s workday or shift. For server-type
applications without a specified stopping point, create an object lifetime
model and procedure for recovering no-longer-used resources. For
applications with a specific stopping point, determine what kind of clean up
needs to be done when the application closes (e.g. disconnect from server,
release resources).

What Language and Interface to Use
The CTI OS Client Interface Library API comes in programming languages, each
with benefits and costs. The choice of interface is important to direct you through
this developer’s guide, since this guide addresses the CIL API for the C++ and
COM programming environments.

The main decision point in choosing which API to use will depend on your
workstation operating system, your existing applications, and the language skills
of your developers.

 • ActiveX Controls. The CTI OS ActiveX controls are the appropriate choice
for creating a rapid “drag-and-drop” integration of CTI and third-party call
control with an existing desktop application. The CTI OS ActiveX controls
are appropriate choice for developing a CTI integration with any fully
ActiveX-compliant container, such as Microsoft Visual Basic 6.0, Microsoft
Visual C++ 6.0, or any other container that fully supports ActiveX features
(e.g. Powerbuilder, Delphi, and many third-party CRM packages). The
ActiveX controls will be the easiest to implement in graphical environments,
and will help achieve the fastest integrations by providing a complete user
interface. All CTI OS ActiveX components are distributed via dynamic link
4-5
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Integrating your Application with CTI OS via the CIL
library files (.dll), which only have to be registered once to work on any
Microsoft Windows platform. These components are not appropriate for
non-Windows environments. The CTIOS ActiveX controls can be used in
Windows Forms .NET applications only if the Runtime Callable Wrappers
(RCWs) provided with the CTI OS Toolkit are a part of the project. For more
details refer to “Using The CTI OS ActiveX Controls” on page 4-10.

 • COM. The CTI OS Client Interface Library for COM (Microsoft’s
Component Object Model) is the appropriate choice for developing a CTI
integration with any COM-compliant container, such as Microsoft Visual
Basic 6.0, Microsoft Visual C++ 6.0, or any other container that fully
supports COM features, such as Microsoft Internet Explorer or Visual Basic
for Applications scripting languages. The COM CIL will be the easiest to
implement in scripting environments, and will help achieve the fastest
integrations requiring a custom or non-graphical user interface. All CTI OS
components are distributed via dynamic link library files (.dll), which only
have to be registered once to work on any Microsoft Windows platform.
These components are not appropriate for non-Windows environments. The
COM CIL can be used in Windows Forms .NET applications only if the
Runtime Callable Wrappers (RCWs) provided with the CTI OS Toolkit are a
part of the project. For more details, refer to “Using the COM CIL in Visual
Basic 6.0” on page 4-15 and “Adding a Hook for Screenpops” on page 4-13.

 • C++. The CTI OS Client Interface Library for C++ is the appropriate choice
for building a high-performance application running on a Windows platform
in a C++ development environment. The C++ CIL is distributed as a set of
header files (.h) that specify the class interfaces to use and statically linked
libraries (.lib) that contain the compiled implementation code. These
components are not compatible with Microsoft's Visual C++ 6.0 or equivalent
compilers and are not appropriate for non-Windows environments.

 • Java. The CTI OS Java Client Interface Library (Java CIL) is an appropriate
choice for non-Microsoft (typically UNIX) operating systems, as well as for
browser based applications.

 • .NET Cil class libraries. This section covers the steps required to reference
the .NET CIL components in a C# and Visual Basic .NET project files
4-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Testing CTI Applications
Testing CTI Applications
Testing is often characterized as the most time-consuming part of any application
development process.

Developing a Test Plan
Testing CTI applications requires a detailed test plan, specific to the business
requirements set forth in the requirements gathering phase of the project. The test
plan should list behaviors (test cases) and set forth requirements to prove that each
test case is successfully accomplished. If a test case fails, it should be investigated
and corrected (if appropriate) before proceeding to the next phase of testing.

It is recommended that you perform (at minimum) the following test phases:

 • Unit Testing. In a unit test, you ensure that all of the new code units can
execute properly. Each component will operate correctly based on the input,
and produce the correct output. An example of a unit test would be to
‘stub-in’ or hardcode the expected screen-pop data, and ensure that all of the
screens come up properly based on this data.

 • Integration Testing. In an integration test, you ensure that all of the new
components work together properly. The physical connections and data
passing between the layers and servers involved in the system are tested. An
example of an integration test would be testing your client application with
the CTI OS server, to ensure that data can be passed correctly through the
components.

 • System Testing. In a system test, you ensure that the correct application
behavior is exhibited. An example of a system test would be to make a phone
call to a VRU, collect the appropriate caller information, transfer the call to
an agent, and ensure that the screen pop arrives correctly.

 • User Acceptance Testing. In a user acceptance test, you ensure that your
application has met all of the business requirements set forth by your analysis
and design process. An example of a user acceptance test would be to try out
your new application with real agents, and ensure that it satisfies their
requirements.
4-7
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using the Samples
Test Environment
The CTI OS Software Development Toolkit (SDK) CD media includes a
CTIServerSimulator that can be used for application development and demo
purposes. It has the capability to roughly simulate a Lucent PBX/ACD or a Cisco
IPCC environment. Documentation on how to configure and use the simulator can
be found on the CTI OS CD in the directory Tools\Simulator.

Note This simulator is only appropriate for preliminary testing of client applications.
Because it does not fully replicate the behavior of the actual switch environment,
the simulator should not be used for any type of QA testing. To ensure proper
design conformance and ensure the correctness of the application, the CTI
application must be tested with the actual telephony environment in which it will
run. This enables the event flow and third-party control components, which are
driven by the switch- and implementation-specific call flow, to be properly and
thoroughly tested.

Using the Samples
The CTI OS Software Development Toolkit (SDK) is distributed with a rich set of
Developer Sample Applications (DSAs) for IPCC customers and similar
Production Class Applications for ICM customers on the CD media.

The DSAs are provided as tools for IPCC customers to accelerate development
efforts. The DSAs demonstrate several basic working applications that use
varying implementations of the CTI OS Client Interface Library API. The samples
are organized by programming language and demonstrate the syntax and usage of
the API. For many developers, these DSAs will form the foundation of your
custom application. The samples are available for you to customize and distribute
as part of your finished product.

For ICM ACD types (such as Avaya, Nortel, Aspect, etc.) some DSAs can be
deployed as Production Class Applications. Cisco certifies and supports the
out-of-the-box CTIOS Agent Desktop and .NET Combo Desktop applications in
production environments when used in conjunction with a supported ICM ACD.
Refer to the ACD Supplement, Cisco ICM Software Supported Switches (ACDs),
at http://www.cisco.com for the current list of supported ACD types.
4-8
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

http://www.cisco.com/univercd/cc/td/doc/product/icm/icmentpr/acddoc/icmacdmx.pdf
http://www.cisco.com/univercd/cc/td/doc/product/icm/icmentpr/acddoc/icmacdmx.pdf
http://www.cisco.com/univercd/cc/td/doc/product/icm/icmentpr/acddoc/icmacdmx.pdf
http://www.cisco.com/univercd/cc/td/doc/product/icm/icmentpr/acddoc/icmacdmx.pdf
http://www.cisco.com

Chapter 4 Building Your Application
Using the Samples

With IPCC, these same DSAs are generally not intended for production use
"as-is". They are neither certified nor supported by Cisco as working
out-of-the-box applications. The exception to this policy is the .NET
out-of-the-box sample application which is certified by Cisco and is supported
with IPCC.

Table 4-1 lists the sample programs on the CTI OS Toolkit CD.

Table 4-1 CTI OS Toolkit Sample Programs

Program Name Location Description

CTI Toolkit
Outbound Desktop

CTIOS Toolkit\Win32
CIL\Samples\CTI Toolkit
Outbound Desktop

A softphone application that
demonstrates Outbound Option (formerly
Blended Agent) functionality.

All Agents Sample
.NET

CTIOS Toolkit\dotNet
CIL\Samples\All Agents
Sample.NET

A Microsoft C# program demonstrating a
monitor mode application. This program
lists all agents in a grid along with current
state updates.

All Calls
Sample.NET

CTIOS Toolkit\dotNet
CIL\Samples\All Calls
Sample.NET

Similar to AllAgents but lists calls
instead of agents.

CTI Toolkit Combo
Desktop.NET

CTIOS Toolkit\dotNet
CIL\Samples\CTI Toolkit Combo
Desktop.NET

A Microsoft C# program that interfaces to
CTIOS via the .NET CIL interface. The
program demonstrates how to build a
multi-functional contact center desktop
that contains Agent, IPCC Supervisor and
Outbound Option features.

CtiOs Data Grid.NET CTIOS Toolkit\dotNet
CIL\Samples\CtiOs Data
Grid.NET

Microsoft C# program that implements a
Tabular Grid used by the CTI Toolkit
Combo Desktop.NET to show calls and
statistics.

CTI Toolkit
AgentDesktop

CTTIOS Toolkit\Win32
CIL\Samples\CTI Toolkit
AgentDesktop

A Visual Basic .NET program using the
CTIOS ActiveX controls. The application
is the source code used by the out of the
box CTI Toolkit AgentDesktop.
4-9
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using The CTI OS ActiveX Controls
Using The CTI OS ActiveX Controls
This section discusses the steps involved in building CTI OS Applications with
Microsoft Visual Basic .NET (VB.NET) using the CTI OS ActiveX controls.

Building a Simple Softphone with ActiveX Controls
To use the CTIOS ActiveX controls, the ActiveX controls need to be copied on
the target system and registered with Windows. This is accomplished by the
CTIOS toolkit install, as well as the CTIOS Agent and Supervisor installs. See the
section entitled Deployment of Custom CTI OS Applications for details.

Once Visual Basic .NET is launched, you can use the ActiveX controls by
selecting them via the Customized Toolbox dialog (Tools->Add/Remove
Toolbox Items via the menu.)

Note Note: If the CTIOS ActiveX controls are not listed as shown in Figure 4-1, the
files are either not copied on the target system or the controls were not properly
registered.

CTI Toolkit IPCC
SupervisorDesktop

CTTIOS Toolkit\Win32
CIL\Samples\CTI Toolkit IPCC
SupervisorDesktop

A Visual Basic .NET program using the
CTIOS ActiveX controls. The application
is the source code used by the out of the
box CTI Toolkit IPCC Supervisor
Desktop.

C++Phone CTIOS Toolkit\Win32
CIL\Samples\CTI Toolkit
C++Phone

A softphone written in C++ linking to the
static C++ libraries. Sending requests and
event handling as well as the use of the
wait object is demonstrated.

AllAgents CTIOS Toolkit\Java CIL
samples

A Java counterpart to the Visual Basic all
agents program.

Table 4-1 CTI OS Toolkit Sample Programs (continued)

Program Name Location Description
4-10
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using The CTI OS ActiveX Controls
Figure 4-1 Customize Toolbox in Visual Basic .Net Listing CTIOS ActiveX

Controls Runtime Callable Wrappers

Once the CTIOS ActiveX controls have been selected in the .NET Framework
Components Tab they should be visible in the Visual Basic .NET ToolBox. The
CTI OS ActiveX RCWs components can now be dragged and dropped onto the
Windows Form. For a softphone application, it is useful to start with the
CallAppearanceCtl (see Figure 4-2).
4-11
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using The CTI OS ActiveX Controls
Figure 4-2 Microsoft Visual Basic .NET Screen with the CTIOS ActiveX

controls.

On the very left the Toolbox is visible showing some of the CTI OS ActiveX
RCWs icons. On the form, the AxCallGrid has been dragged and dropped.

For a complete description of the ActiveX controls see Chapter 5, “CTI OS
ActiveX Controls.” Figure 4-3 shows the CTIOS Toolkit Agent Desktop
application, which is also included as a sample on the CTIOS CD.

Figure 4-3 CTIOS Toolkit Agent Desktop (see CD) Built with CTI OS ActiveX Controls

Once all ActiveX controls are placed on the phone, you can create an executable
in Visual Basic .NET via Build->Build Solution or pressing <F7>.
4-12
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using The CTI OS ActiveX Controls
Adding a Hook for Screenpops
This agent desktop application did not require any Visual Basic .NET coding at
all. A user may choose to add some custom code to add a hook for screenpops.
For example, a user may want to retrieve CallVariables, which are passed along
with certain call events.

CTIOS SessionResolver

A CTIOS Client application connects to CTIOS with a Session object (see
Chapter 8, “Session Object”). Depending on the application, a client can use one
or more Session objects. For most agent desktop applications, however, it is
useful to employ only a single Session object.

If one chooses to write a program not using ActiveX controls, a Session object can
be created and used directly (see CTI Toolkit AgentDesktop at the Win32 CIL
samples).

However, in the case of an application built with the ActiveX controls, all ActiveX
controls must use the same session object. The ActiveX controls accomplish this
by retrieving a pointer to the same session object via the SessionResolver. The
program hosting the ActiveX can obtain the Same session object by using the
SessionResolver.GetSession method to retrieve a session named “”.

Sample VB .NET code to Retrieve CallVariable1

The following sample VB .NET code will retrieve the common session and just
listen for a CallEstablishedEvent occurring in that session. If a
CallEstablishedEvent occurs, it will retrieve CallVariable 1 and put it in the
Windows Clipboard (from where it can be retrieved via CTRL-v or be used by
other applications).

This code uses the COM CIL Interfaces and therefore, needs the following
references: Cisco.CTIOSCLIENTLib, Cisco.CTIOSARGUMENTSLib,
Cisco.CTIOSSESSIONRESOLVERLib. The references are shown in Figure 4-4
(in Visual Basic .NET, select Project-> Add Reference...).
4-13
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using The CTI OS ActiveX Controls
Figure 4-4 CTI OS COM CIL RCWs References Needed for Visual Basic .NET

COM Programming

' VB sample for a simple CTIOS phone
' needs references to Cisco.CTIOSCLIENTLib
Cisco.CTIOSSESSIONRESOLVERLib and Cisco.CTIOSARGUMENTSLib
'
' dim CTIOS session interface
' the session interface handles connect, setagent and others
Dim WithEvents m_session As Cisco.CTIOSCLIENTLib.Session

' the sessionresolver is needed to retrieve the session pointer
Dim m_sessionresolver As Cisco.CTIOSSESSIONRESOLVERLib.SessionResolver

Private Sub Form_Initialize_Renamed()
 ' instantiate the sessionresolver
 Set m_sessionresolver = New
Cisco.CTIOSSESSIONRESOLVERLib.SessionResolver

 ' CTI OS ActiveX controls use the session named "" - blank
 ' since the CTI OS ActiveX controls do the connection and login,
 ' all we do is listen for events
 Set m_session = m_sessionresolver.GetSession("")
4-14
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using the COM CIL in Visual Basic 6.0
End Sub

Private Sub Form_Terminate_Renamed()
 Call m_sessionresolver.RemoveSession("")
End Sub

Private Sub m_Session_OnCallEstablished(ByVal pIArguments As
Cisco.CTIOSCLIENTLib.Arguments)
' Handles m_Session.OnCallEstablished
 GetCallVariable1 pIArguments
End Sub

Function GetCallVariable1(ByVal pIArguments As
CTIOSCLIENTLib.IArguments)

 Dim m_uid As String
 m_uid = pIArguments.GetValueString("Uniqueobjectid")

Dim m_call As Cisco.CTIOSCLIENTLib.Call
 Set m_call = m_session.GetObjectFromObjectID(m_uid)

 ' retrieve callvar1
 Dim m_callvar1 As String
 m_callvar1 = m_call.GetValueString("Callvariable1")

 'copy call variable1 to the clipboard
 Clipboard.SetText m_callvar1
End Function

Using the COM CIL in Visual Basic 6.0
Building a custom CTI application in Visual Basic 6.0 (or adding CTI
functionality to your existing Visual Basic application) is very simple, but
requires basic knowledge of referencing and using COM components in Visual
Basic. All of the CIL components for COM are distributed as COM Dynamic Link
Libraries (COM DLL).

In order to be accessible to COM containers, including Visual Basic 6.0, COM
components must be registered with Windows. The components that you will
require for programming in Visual Basic 6.0 are:

 • CTI OS Client library (CTIOSClient.dll). This is the main CIL library for
COM. The objects available in this library are described fully in the chapters
that follow, “Session Object,” “Agent Object,” “Call Object,” and
“SkillGroup Object.”
4-15
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using the COM CIL in Visual Basic 6.0
 • CTI OS Arguments Library (arguments.dll). The Arguments helper class is
used extensively in CTI OS, and is described fully in the chapter “Helper
Classes.”

 • CTI OS Session Resolver (ctiossessionresolver.dll). The Session Resolver is
used to share a single CTI OS Session across multiple compilation unites (e.g
.DLL files). It is only required in applications that use ActiveX controls or
mix ActiveX controls with custom code.

Referencing COM Components in Visual Basic 6.0
To make use of these objects in your CTI application, Visual Basic 6.0 uses the
concept of referencing COM components. To add or remove references within a
Visual Basic application, go to the Project / References menu. The following
Project References window will be displayed:

In the Project References menu, select the required COM DLLs by checking the
appropriate check boxes. The required library names are:

 • Cisco COM CTIOS Client Interface Library
4-16
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using the COM CIL in Visual Basic 6.0
 • Cisco COM CTIOS Arguments Library

Click on the OK button to exit the Project Reference screen, and save your project.

Registering for Events in Visual Basic 6.0
To start using the CTI OS Client Interface Library in your application, you will
need to declare the Session object and register for events.

In your code window, you will also need to declare (Dim) the Session object, and
register for COM events from it. The following sample code demonstrates the
syntax required to declare the Session object and register for COM events in
Visual Basic 6.0:

Dim WithEvents session As CTIOSCLIENTLib.session

In addition, you will need to tell Visual Basic to create the Session object when
your application loads, and to destroy to Session object when your application
closes:

Private Sub Form_Load()
 Set session = New session
End Sub

Private Sub Form_Terminate()
 Set session = Nothing
End Sub

Your Visual Basic 6.0 application now references the CTI OS Client Library and
is registered to receive COM events.

Next Steps
 • For detailed information on the CTI OS client start up and shut down

sequence, see the section “Disconnecting from CTI OS Server”.

 • For detailed information on the CTI OS Client Interface Library objects, see
Chapters 8 through 12.

 • For a sample application written in Visual Basic 6.0, see the Vbphone sample
application on the CTI OS CD.
4-17
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using the COM CIL in Visual C++ 7.1(1)
Using the COM CIL in Visual C++ 7.1(1)

Note All C++ applications using COM CIL 7.1(1) must be built using Visual Studio
.NET. Applications using COM CIL 7.1(1) built with Visual C++ 6.0 are not
supported.

Building a custom Win32 (Console or Windows) CTI application in Visual C++
7.1(1) with COM requires knowledge of creating and using COM components in
Microsoft Visual C++ 7.1(1). Client applications of this type tend to be more
complex to build, but more powerful and faster in execution, than scripting clients
(i.e. Visual Basic). All of the CIL components for COM are distributed as COM
Dynamic Link Libraries (COM DLL).

In order to be accessible to COM containers, including Microsoft Visual C++
7.1(1), COM components must be registered with Windows. The components that
you will require for programming in Microsoft Visual C++ 7.1(1) are:

 • CTI OS Client library (CTIOSClient.dll). This is the main CIL library for
COM. The objects available in this library are described fully in Chapters 8
through 11.

 • CTI OS Arguments Library (arguments.dll). The Arguments helper class is
used extensively in CTI OS, and is described fully in Chapter 12, “Helper
Classes.”

 • CTIOS Session Resolver (ctiossessionresolver.dll). This object allows
multiple applications or controls to use a single CTIOS Session object. It is
required when building an application that will include the CTIOS ActiveX
controls.

Adding COM Support to your Application
To make use of these objects in your CTI application, your application must
support COM. To add COM support to your application, you must use one of the
following:

 • Microsoft Foundation Classes (MFC). The following header file are required
for MFC applications to use COM: afxwin.h, afxext.h, afxdisp.h, and
afxdtctl.h. If you build an application using the Microsoft Visual C++ 7.1(1)
application wizard, these files are included for you automatically.
4-18
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using the COM CIL in Visual C++ 7.1(1)
 • Microsoft’s ActiveX Template Library (ATL). To use ATL, include the
standard COM header file: atlbase.h.

Important Note About COM Method Syntax

In this manual, the syntax used to describe method calls in COM shows standard
COM data types such as BSTR, VARIANT and SAFEARRAY. Be aware that
depending on the development environment, tools, and the manner how the COM
CIL is included in your project application, these data types can be encapsulated
by wrapper classes proper to the environment.

For example, in a Microsoft Visual C++ 7.1(1) project a VARIANT type can be
either a CComVariant or _variant_t, and a BSTR type can be either a CComBSTR
or _bstr_t.

For more information, see the documentation for your development environment.

Using the CIL Dynamic Link Libraries
Next, you must import the COM Dynamic Link Libraries into your C++
application. The following code sample (which you might put into your StdAfx.h
file) depicts how to use a COM Dynamic Link Library in C++:

#import "..\..\Distribution\COM\ctiossessionresolver.dll" using namespace CTIOSSESSIONRESOLVERLib;

#import "..\..\Distribution\COM\ctiosclient.dll" using namespace CTIOSCLIENTLib;

Note You must register three DLLs, but you do not need to import the arguments.dll
into your project since it is imported by the ctiosclient.dll type library.

Creating an Instance of a COM Object
COM objects in C++ are created via the COM runtime library. To create a COM
object at run time, your program will need to use the CreateInstance() method
call.

// Create SessionResolver and Session object
hRes = m_pSessionResolver.CreateInstance (OLESTR("CTIOSSessionResolver.SessionResolver"));
4-19
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using the COM CIL in Visual C++ 7.1(1)
if (m_pSessionResolver)
{

m_pSession = m_pSessionResolver->GetSession(_bstr_t(""));
}

Once the Session object is created, you can use it to make requests, and subscribe
for events.

Subscribing and Unsubscribing to COM Events in C++
In this model, client applications subscribe for events by registering an instance
of an event sink in the client with the event source. The COM Session object
publishes several event interfaces (event sources), and clients can subscribe to any
or all of them.

To receive COM events, you must first create an event sink class, which should
derive from a COM event sink class. The Comphone sample application uses the
MFC class CCmdTarget.

class CEventSink : public CCmdTarget
{
//…
};

This class must implement the method signatures for the events it expects to
receive. When an event is fired from the event source, the corresponding method
in your event sink class will be invoked, and you can perform your custom event
handling code at that time.

To subscribe for an event, the client must call the AtlAdvise() method, specifying
a pointer to the interface of the event source.

// Add event sink as event listener for the _IallEvents interface

HRESULT hRes =
AtlAdvise(m_pSession, m_EventSink.GetIDispatch(FALSE),
__uuidof(_IAllEvents), &m_dwEventSinkAdvise);

When the program run is complete, the client must unsubscribe from the event
source, using the AtlUnadvise() method:

// Unsubscribe from the Session object for the _IAllEvents interface

HRESULT hRes =
AtlUnadvise(m_pSession, __uuidof(_IAllEvents), m_dwEventSinkAdvise);
4-20
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using the C++ CIL and Static Libraries
Next Steps
 • For detailed information on the CTI OS client start up and shut down

sequence, see the section “Disconnecting from CTI OS Server”.

 • For detailed information on the CTI OS Client Interface Library objects, see
Chapters 8 through 12.

 • For a complete sample application that uses the CIL COM interface written
in C++, see the Comphone sample application on the CTI OS CD.

Using the C++ CIL and Static Libraries

Note All C++ applications using C++ CIL 7.1(1) must be built using Visual Studio
.NET. Applications using C++ CIL 7.1(1) built with Visual C++ 6.0 are not
supported.

The CTI OS Client Interface Library for C++ is the most powerful,
object-oriented CTI interface for C++ developers. It provides the same interface
methods and events as the COM interface for C++, but will be more
straightforward for C++ developers who are not experienced COM programmers,
and will provide faster code execution.

The CIL interface for C++ is a set of C++ header files (.h), and static libraries
compiled for the Win32 platform (Windows NT, Windows 2000). The header files
required to access the class definitions are located on the CTI OS SDK media in
the CTIOSToolkit\Include\ directory, and the static libraries are located in the
CTIOS Toolkit\Win32 CIL\Libs directory.

Header Files and Libraries
The header files you will most likely require are all included in the main CIL
header file, CIL.h, which you would want to include in your application.

#include <Cil.h>

To link your application code with the CIL for C++, you will require the following
C++ static libraries:
4-21
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using the C++ CIL and Static Libraries
 • ConnectionLibSpd.lib. This library contains the connection-layer services
for CIL.

 • ServiceLibSpd.lib. This library contains the service-layer services for CIL.

 • SessionLibSpd.lib. This library contains the object-interface services for
CIL.

 • UtilLibSpd.lib. This library contains helper classes for CIL.

 • ArgumentsLibSpd.lib. This library contains the Arguments data structure
for CIL.

 • SilentMonitorLibSpd. This library contains all the services required to
establish and control silent monitor sessions.

 • SecuritySpd.Lib. This library contains the services required to establish
secure connections with CTI OS Server.

 • SilentMonitorClient.lib. This library is used by the CIL to communicate with
the silent monitor service.

 • SilentMonitorCommon.lib and ServiceEventHandler.lib. These libraries
contain support classes for SilentMonitorClient.lib.

Note The preceding are the Release versions of the libraries. The Debug equivalent
libraries use the same library name with the appended ‘d’ instead of Spd; e.g., for
ArgumentsLibSpd, the Debug library is ArgumentsLibd.lib.

In addition to the aforementioned CTI OS CIL libraries, your application will
require the standard Microsoft sockets library, Wsock32.lib, the standard
multimedia library winmm.lib, and the OpenSSL standard libraries

libeay32d.lib, ssleay32d.lib (Debug) and libeay32d.lib,ssleay32r.lib (Release).

Project Settings for Compiling and Linking
Setting up your Visual C++ 7.1(1) application requires you to configure some
program settings. The Program Setting in Visual C++ 7.1(1) are accessed under
the Project -> Properties menu:
4-22
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using the C++ CIL and Static Libraries
Within the Project Settings dialog, select the C/C++ tab, select "General" and then
select “Additional include Directories”. Provide either the absolute or relative
path to find the header files (.h) required for your application. This path should
point to the CTIOSToolkit\Win32 CIL\Include directory, where the CIL header
files are installed.

Within the Property Pages dialog, select the C/C++ folder. Select Code
Generation. For a Debug Mode program, the setting for “Runtime Library” should
be “Multi-threaded Debug DLL (/MDd)”. For a Release Mode program, the
setting should be “Multi-threaded DLL (/MD).”

Next, under the “Proprocessor,” you will need to set the "Preprocessor
Definitions". You will need to provide the compiler with the following define
constants _USE_NUMERIC_KEYWORDS=0;_WIN32_WINNT=0x0500;
WIN32_LEAN_AND_MEAN in addition to the suggested by default.
4-23
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using the C++ CIL and Static Libraries
Next, you need to set the link settings for your project, under the Link folder. You
must list all the static libraries for your program to link with under the Project
Settings for Compiling and Linking. The libraries required for CIL (in addition to
the default libraries) are described in the section “Header Files and Libraries” on
page 4-21.
4-24
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using the C++ CIL and Static Libraries
Finally, on the Link folder, select “General” to “Input.” You will need to set the
“Additional Library Directories:” to the location of the CTIOSToolkit\Win32
CIL\Libs directory:
4-25
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using the C++ CIL and Static Libraries
The foregoing are all the Project Settings required for CTI OS. Click OK, and save
your project settings.

Subscribing for Events in C++
Events interfaces are provided in C++ using the publisher-subscriber model. To
subscribe for events, you must create a callback class (event sink), or implement
the event interface in your main class. The callback class can be derived from the
Adapter classes defined in CIL.h, such as AllInOneEventsAdapter.h.

To register for an event, you use the appropriate AddEventListener method on the
Session object:

// Initialize the event sink
m_pEventSink = new CEventSink(&m_ctiSession, &m_ctiAgent, this);

// Add event sink as an event listener
m_ctiSession.AddAllInOneEventListener((IAllInOne *) m_pEventSink);

To remove an event listener (upon program termination), use the appropriate
RemoveEventListener on the Session object:

// Tell session object to remove our event sink
m_ctiSession.RemoveSessionEventListener((IAllInOne *) m_pEventSink);
4-26
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using the Java CIL Libraries
STLPort
Version 7.1(1)(0) of the Cisco CTI OS Toolkit no longer uses STLPort. Instead,
it uses Microsoft’s version of STL, thereby removing any special configuration of
the build environment.

Next Steps
 • For detailed information on the CTI OS client start up and shut down

sequence, see the section “Disconnecting from CTI OS Server”.

 • For detailed information on the CTI OS Client Interface Library objects, see
Chapters 6 through 11.

 • For a complete sample application that uses the CIL interface with C++ static
libraries, see the C++phone sample application on the CTI OS CD.

Using the Java CIL Libraries
The Java CIL provides a powerful cross-platform library for developing Java CTI
applications. It is built using a similar architecture to the C++ CIL and the
interface is also similar to C++ with some differences. As a result, a developer
porting a C++ CIL application to Java or working between a Java and C++ should
find it fairly easy to switch between the two.

The Java CIL consists of two packages contained in a single JAR file called
JavaCIL.jar. The packages are com.cisco.cti.ctios.util and com.cisco.cti.ctios.cil.
The Java CIL can be installed on Windows using the CTI OS Client Install or it
can be copied directly from the CTIOS_JavaCIL directory on the CTIOS media
under Installs\CTIOSClient. The Java CIL also includes JavaDoc with the
distribution. No install is provided for Linux. Users will need to mount the
CDROM and copy the CTIOS_JavaCIL directory from the media. The Java CIL
version can be checked by using the CheckVersion.bat program in Windows or the
checkversion shell script on Linux. Both of these can be found in the same
directory as the JAR file.

Sun JRE installers are also included on the media as a convenience for developers
who need to obtain the correct version of the JRE.
4-27
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Using the .NET CIL Libraries
The Java CIL ships with a GUI TestPhone application which provides most of the
functionality found on the CTIOS Agent and Supervisor Desktops. The
distribution also includes samples that are Java versions of some of the
C++/COM/VB sample applications. See the section entitled “Using the Samples”
for more information.

Next Steps
 • Refer to Chapter 6 and Appendix A for differences between the C++ and Java

event publishing.

 • Refer to Chapters 7 through 12 for differences in method calls and syntax for
those classes between C++ and Java.

 • Refer to Appendix B for differences between C++ and Java tracing.

Using the .NET CIL Libraries
The .NET CIL provides native .NET class libraries for developing native .NET
Framework applications. It is built using the same architecture as the Java CIL and
the interface is also similar to C++ with some differences. As a result, a developer
porting a C++ CIL application to .NET CIL between a .NET and Win32 should
find it fairly easy to switch between the two.

The .NET CIL consists of two class libraries: NetCil.dll and NetUtil.dll that need
to be added as references on the build project. See the CTIOS Toolkit Combo
Desktop sample.

For deploying the client application, it is recommended that the NetCil.dll and
NetUtil.dll class libraries to be installed on the host's Global Assembly Cache
(GAC) using the "gacutil" (provided by in Microsoft Visual Studio .NET 2003)
or the "Microsoft .NET Framework 1.1" configuration manager. Together with
.NET CIL are provided sample programs that teaches the use of the API under a
.NET programming environment. See the section entitledChapter 4, “Using the
Samples,” for more information.
4-28
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Connecting to the CTI OS Server
Next Steps
 • Refer to Chapter 6 and Appendix B for differences between the C++, and

.NET and Java event publishing.

 • Refer to Chapters 7 through 12 for differences in method calls and syntax for
those classes between C++ and Java.

Connecting to the CTI OS Server
To connect a desktop application to the CTI OS server, you must:

5. Create a session instance, described below.

6. Set the event listener and subscribe to events, described below.

7. Set connection parameters, described below.

8. Call the Connect() method, described on page 4-31.

9. Set the connection mode, described on page 4-34.

This section also describes how to deal with connection failures, on page 4-31.

How to Create the Session Instance
To connect to the CTIOS Server, you must first create an instance of the
CtiOsSession object.

The following line shows this in Java:

CtiOsSession rSession = new CtiOsSession();

Session Object Lifetime (C++ only)

In C++, a Session object must be created on the heap memory store so that it can exist
beyond the scope of the method creating it. (In COM, VB, and Java, this is handled
automatically.)

For example:

CCtiOsSession * m_pSession = NULL;
m_pSession = new CCtiOsSession();
4-29
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Connecting to the CTI OS Server
The client application should hold a reference to the Session object as long as it
is in use, but the client programmer must release the last reference to the object to
prevent a memory leak when the object is not longer needed.

During application cleanup, the Session object must only be disposed by invoking
the CCtiOsSession::Release() method. This will ensure proper memory cleanup.

For example:

m_pSession->Release();

How to Set the Event Listener and Subscribe to Events
Before making any method calls with the Session instance, you must set the
session as an event listener for the desktop application and subscribe to events.

The following lines show this in Java:

rSession.AddEventListener(this,
CtiOs_Enums.SubscriberList.eAllInOneList);

In this example, the session is adding the containing class, the desktop
application, as the listener, and using the eAllInOneList field in the
CtiOs_Enums.SubscriberList class to subscribe to all events.

How to Set Connection Parameters for the Session
To set connection parameters:

Step 1 Create an instance of the Arguments class.

Step 2 Set values for the CTIOS servers, ports, and the heartbeat value.

Note When setting values, use the String key fields in the CtiOs_IKeywordIDs
interface, as shown in the example below.
4-30
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Connecting to the CTI OS Server
The following example demonstrates this task in Java:

/* 1. Create Arguments object.*/
Arguments rArgs = new Arguments();

/* 2. Set Connection values.*/
rArgs.SetValue(CTIOS_enums.CTIOS_CTIOSA, “CTIOSServerA”);
rArgs.SetValue(CTIOS_enums.CTIOS_PORTA, 42408);
rArgs.SetValue(CTIOS_enums.CTIOS_CTIOSB, “CTIOSServerB”);
rArgs.SetValue(CTIOS_enums.CTIOS_PORTB, 42408);
rArgs.SetValue(CTIOS_enums.CTIOS_HEARTBEAT, 100);

Note The Arguments.setValue() methods return a boolean value to indicate whether
the method succeeded (true) or not (false).

How to Connect the Session to the CTI OS Server
After you successfully create the Session instance, you must connect it to the CTI
OS Server using the Session.Connect() method, using the Arguments instance you
constructed when setting connection parameters, as described in the previous
section.

The following line shows this in Java:

int returnCode = session.Connect(rArgs);

For more information on the possible values and meanings of the int value
returned by the Connect() method in the Java CIL, see page 4-32.

When successful, the Connect() method generates the OnConnection() event.
Code within the OnConnection() event should set the connection mode, as
described in the next section.

Dealing with Connection Failures
This section contains the following information:

 • Connection Failure Events, page 4-32

 • Connection Attempt Error Codes in Java and .NET CIL, page 4-32

 • Configuring the Agent to Automatically Log In after Failover, page 4-33
4-31
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Connecting to the CTI OS Server
 • Stopping the Failover Procedure, page 4-34

Also see How to Deal with Failover In Monitor Mode, page 4-40.

Connection Failure Events

If the Connect() method does not succeed, one of the following events is
generated:

 • OnConnectionRejected() event indicates that an unsupported version
mismatch has been found.

 • OnCTIOSFailure() indicates that the CTI OS Server requested in the
Connect() method is down. If an OnConnectionFailure() event is generated,
the application is in Failover and the CIL continues to attempt to connect until
the connection succeeds or until the application calls Disconnect(). The
Arguments parameter for the event includes the following keywords:

 – FailureCode

 – SystemEventID

 – SystemEventArg1

 – ErrorMessage

For more information on the contents of the OnConnectionFailure() event,
see the description in Chapter 6.

Connection Attempt Error Codes in Java and .NET CIL

The following field values may be returned by the Connect() method. See the
documentation for the CtiOs_Enums.CilError interface in the CIL JavaDoc for
information on these fields.

 • CIL_OK - The connection process has successfully begun. The CIL will
either fire the OnConnection() event to indicate that the CIL successfully
connected or will fire the OnConnectionFailure() event and go into failover
mode. If the latter occurs, the CIL will continue to attempt to connect,
alternating between hosts CTIOS_CTIOSA and CTIOS_CTIOSB, until the
connection succeeds, at which point the CIL will fire the OnConnection()
event.

 • E_CTIOS_INVALID_ARGUMENT - A null Arguments parameter was
passed to the Connect() method. The connection failed. No events are fired.
4-32
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Connecting to the CTI OS Server
 • E_CTIOS_MISSING_ARGUMENT - The Arguments parameter did not
contain values for both CTIOS_CTIOSA and CTIOS_CTIOSB. At least one
of these values must be provided. The connection failed. No events are fired.

 • E_CTIOS_IN_FAILOVER - A previous connection attempt failed and the
CIL is currently in failover and attempting to establish a connection. This
continues until a connection is established, at which point the CIL will fire an
OnConnection() event indicating that the previous Connect() method has
succeeded. To attempt to connect again with different parameters, the
application must first use the Disconnect() method.

 • E_CTIOS_SESSION_NOT_DISCONNECTED - The Session is not
disconnected (i.e. a previous Connect() method is in progress, or the Session
is already connected). The application must call the Disconnect() method
before attempting to establish another connection. The CIL may fire an
OnConnection() event for the to previous call to the Connect() method if the
connection was in progress, but will not fire one corresponding to this method
call.

 • E_CTIOS_UNEXPECTED - There was an unanticipated error. The
connection failed. No events are fired.

Note Once the application receives a Connect return code of CIL_OK, it should not call
Connect again on that session until it receives an OnConnectionClosed event after
a call to Disconnect.

Configuring the Agent to Automatically Log In after Failover

If you are using CTI OS in an IPCC Enterprise environment, you can configure
the agent to automatically log in again in the event of a failover.

To configure the agent to log back in automatically, add the
CTIOS_AUTOLOGIN keyword with the value “1” to the Arguments instance
used to configure the agent:

rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AUTOLOGIN, “1”);

For more information on logging in an agent, see page 4-43.
4-33
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Connecting to the CTI OS Server
Stopping the Failover Procedure

To stop the failover procedure, call the Disconnect(args) method, with the
Arguments instance containing the CTIOS_FORCEDDISCONNECT keyword as
a parameter.

How to Set the Connection Mode
After the session is created, you must specify the connection mode for the session.
You must use one of two modes:

 • Agent mode

 • Monitor mode

Setting the Connection Mode in the OnConnection() Event Handler

To ensure that you only try to set the connection mode on valid connections, you
should place the code to set the connection mode within the OnConnection() event
handler. The OnConnection() event is generated by a successful Connect()
method.

Caution The application should contain logic within the OnConnection() event handler
to ensure it attempts to set the connection mode only during the initial
connection, and not in an OnConnection() event due to failover.

When to Use Agent Mode

You use Agent mode for connections when the client application must log in and
control a specific agent. When in Agent mode, the connection also receives call
events for calls on that agent’s instrument, as well as system events.

How to Select Agent Mode

To select Agent mode for the connection, in the OnConnection() event:

Step 1 Set properties for the agent.
4-34
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Connecting to the CTI OS Server
Note The properties required for the agent depend on the type of ACD you
are using. The following example demonstrates the required
properties for IPCC users.

Step 2 Set the agent for the Session object to that Agent object.

Note In the Java CIL only: If the SetAgent() method is called on a session
in which the current agent is different than the agent parameter in the
SetAgent() method, the Java CIL automatically calls the Disconnect()
method on the current session instance, generating an
OnCloseConnection() event, then attempts to reconnect, generating an
OnConnection() event. Then the new agent is set as the current agent.

The following example, which assumes the Session object has been created and
connected to the CTI OS Server, demonstrates this task in Java:

void OnConnection(Arguments rArgs) {

 /* 1. Create and agent and set the required properties. */
 Agent agent = new Agent();
 agent.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTID, "275");
 agent.SetValue(CtiOs_IKeywordIDs.CTIOS_PERIPHERALID, "5002");

 /* 2. Set the session's agent */
 int returnValue = session.SetAgent(agent);

}

When successful, the SetAgent() method generates the following events:

 • OnQueryAgentStateConf()

 • OnSetAgentModeConf()

 • OnSnapshotDeviceConf(), if the agent is already logged in

 • OnSnapshotCallConf(), if there is a call and the agent is already logged in

 • OnCTIOSFailureEvent()
4-35
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Connecting to the CTI OS Server
When to Use Monitor Mode

Applications that need to receive all events that CTI OS Server publishes, or a
specified subset of those events should use Monitor Mode. Monitor mode
applications may receive events for calls, multiple agents, or statistics. The
session receives specific events based on the event filter specified when setting
the session to Monitor mode.

Caution Monitor mode, as the name implies, is intended for use in applications that
passively listen to CTIOS server events. Monitor mode is not intended for use in
applications that actively control the state of calls or agents. Such applications
include but are not limited to the following:
- Applications that log in agents and change their state
- Applications that make or receive calls and change their state
- Applications that silent monitor agents

Caution When a Monitor mode session is initialized, the CTI OS Server performs a
CPU intensive sequence of operations to provide the application with a
snapshot of the state of the system. A large number of monitor-mode
applications connecting to CTIOS server at the same time, such as in a
fail-over scenario, may cause significant performance degradation on CTI OS
Server. You should therefore minimize the number of Monitor mode
applications connecting to CTI OS Server.

Warning Note that the button enablement feature can only be used in agent mode
sessions and are not intended for monitor mode applications.
4-36
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Connecting to the CTI OS Server
Monitor Mode Filters

Overview

To set a connection to Monitor mode, you must create a filter that specifies which
events to monitor over that connection. The filter is a String; that String is the
value for the CtiOs_IKeywordIDs.CTIOS_FILTER key in an Arguments
instance. That Arguments instance is the argument for the SetMessageFilter()
method.

Filter String Syntax

The filter String you create to specify events to monitor must adhere to a specific
syntax to accurately instruct the CTI OS Server to send the correct events.

The general syntax for the filter String is as follows:

“key1=value1, value2, value3;key2=value4, value5, value6”

Note The filter String may also contain an asterisk (*), which is used as a wildcard
to indicate any possible value. A prefix can be used in addition to * to narrow
the results. For example, using 10* will match 1001, 1002, 10003.However,
CTI OS ignores any characters that follow the asterisk. For example, using
10*1will match both 1001and 1002.

The filter String must contain at least one key, and there must be at least one value
for that key. However, a key may take multiple values, and the filter String may
contain multiple keys.

Multiple values for a single key must be separated by commas (,). Multiple keys
must be separated by semicolons (;).

Note Multiple keys in a single filter combine using a logical AND. That is, the filter
is instructing CTI OS to send to this connection only events that meet all the
criteria included in the filter.
4-37
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Connecting to the CTI OS Server
For example, a filter String could be as follows:

S_MESSAGEID + "=" + CtiOs_Enums.EventID.eAgentStateEvent + ";" +
S_AGENTID + "=5128";

This example works as follows:

 • The first key-value pair, S_MESSAGEID + "=" +
CtiOs_Enums.EventID.eAgentStateEvent, serves to request events with a
message ID equal to eAgentStateEvent; that is, it requests agent state events.

 • The second key-value pair, S_AGENTID + "=5128", specifies that the request is
for the agent with the ID 5128.

 • The result of the filter then is that the connection will receive agent state
events for agent 5128.

Filter Keys

Filter keys can be any known key value used by CTI OS. These keys have
corresponding fields in the CtiOs_IKeywords interface.

Note When constructing the filter String, use the fields that begin with “S_”, as
these are the String values for the key.

For example, in Java:

String sFilter = S_AGENTID + "=5128,5129,5130";

In this example, S_AGENTID is the String representation of the key indicating an
Agent ID.

Filtering for Events for Monitored Calls or Monitored Agents

If a client filter mode application wants to filter for events for monitored calls, the
application should do the following:

 • Create the filter

 • Check events to verify that the CTIOS _MONITORED parameter is present
and is TRUE
4-38
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Connecting to the CTI OS Server
 • Ignore events if the CTIOS_MONITORED parameter is missing or FALSE

How to Select Monitor Mode

To select Monitor mode for the connection:

Step 1 Specify the filter String. See the previous section for filter details.

Step 2 Create an Arguments instance and add an item with
CtiOs_IKeywordIDs.CTIOS_FILTER as the keyword and the filter String as the
value.

Step 3 Use the CtiOsSession.SetMessageFilterArgs(args) method to select Monitor
mode and to set the event filter.

Note You should always include the OnCtiOsFailure() event in the message
filter, so that the application can detect when a system component is
comes on- or offline.

Caution A Monitor Mode application that monitors any Call-related events must also
monitor the OnCallEnd() event, as described on page 4-63.

The following example, which assumes the Session object has been created,
demonstrates this task in Java:

/* 1. Constructing message filter string /

String filter = "messageid=" + eAgentStateEvent + "," +
eAgentInfoEvent + “,” + eCTIOSFailureEvent;

/* 2. Create the Arguments object*/
Arguments rArgs = new Arguments();

/* 3. Add the filter to the Arguments instance.*/
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_FILTER, filter);

/* 3. Set the message filter.*/
int returnValue = session.SetMessageFilter(rArgs);

When successful, the SetMessageFilter() method generates the following events:
4-39
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Connecting to the CTI OS Server
 • With IPCC only, OnQueryAgentStateConf() for each team and each agent
logged in

 • OnSnapshotDeviceConf() for each device

 • OnSnapshotCallConf()

 • OnMonitorModeEstablished()

How to Deal with Failover In Monitor Mode

The CTI OS CIL does not support failover for Monitor mode. Agents in monitor
mode cannot recover their state after a failover. Furthermore, after a failover, the
CTI OS CIL may leak Call objects.

To deal with failover in Monitor mode:

Step 1 When the application detects a failover, for example, in a CTIOSFailure() event
indicating a connection failure or an offline component, wait until the CIL has
failed over and everything is back online and the CIL is connected to CTI OS.

The Monitor mode application is responsible for determining when all required
servers are online. You can do this by monitoring OnCtiosFailure() events and
keeping track of system status changes as they occur.

Step 2 Use the Disconnect() method to disconnect the session from CTI OS.

Step 3 Follow the steps starting at the beginning of the section “Enabling Silent Monitor
in your Application” to:

a. Create a session instance.

b. Set the event listener.

c. Set connection parameters.

d. Call the Connect() method.

e. Set the connection mode in the OnConnection() event handler.

Settings Download
One of the many useful features of CTI OS is the ability to configure settings for
the Agent Desktop once on the server and have them be available to all agent
desktops via the RequestDesktopSettings() method. Any changes can be
4-40
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Connecting to the CTI OS Server
made once on the server instead of changing each and every desktop. Settings
download can be considered as part of the process of setting up a connection that
the client application will use.

Desktop settings are stored in the registries on the machine(s) running CTI OS
Server. Centralizing the desktop settings on the server streamlines the process of
changing or updating the agent desktop. A settings download every time a client
application connects ensures that all the desktops are based on the same settings.

Downloading settings from CTI OS Server can be done after connecting and
setting the mode via the RequestDesktopSettings() method on the
Session object. The OnGlobalSettingsDownloadConf event indicates
success and also returns the settings which are now available to the client
application in the form of properties on the Session object. These properties can
be accessed via the GetValue() methods. Refer to Chapter 9 for a list of all the
properties of the Session object.

The request for desktop settings can be made either in the OnConnection event
or in the OnSetAgentModeEvent event (if Agent mode has been specified).
Sample code:

Private Sub m_Session_OnConnection(ByVal pDispParam As Object)
'Issue a request to the server to send us all the Desktop 'Settings
m_Session.RequestDesktopSettings eAgentDesktop

End Sub

The OnGlobalSettingsDownloadConf event passes back the settings and
they can be accessed via the Session object. For example, the following snippet
checks for Sound Preferences and specifically to see if the Dial Tone is Mute or
not:

Private Sub m_session_OnGlobalSettingsDownloadConf(ByVal pDispParam As
Object)

Dim SoundArgs As CTIOSARGUMENTSLib.Arguments
' check if "SoundPreferences is a valid property

If m_session.IsValid("SoundPreferences ") = 1 Then
 Set SoundArgs = m_session.GetValue("SoundPreferences")
 Dim DialToneArgs As CTIOSARGUMENTSLib.Arguments
 If Not SoundArgs Is Nothing Then
 If SoundArgs.IsValid("DialTone") = 1 Then
 Set DialToneArgs = SoundArgs.GetValue("DialTone")
 End If
 End If

 Dim Mute As Integer
4-41
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Connecting to the CTI OS Server
 If Not DialToneArgs Is Nothing Then
 If DialToneArgs.IsValid("Mute") = 1 Then
 Mute = DialToneArgs.GetValueInt("Mute")
 If Mute = 1 Then
 MsgBox "Dial Tone MUTE"//Your logic here
 Else
 MsgBox "Dial Tone NOT MUTE"//Your logic here
 End If
 End If

End If
End If
End Sub

Disconnecting from CTI OS Server
Disconnecting from CTI OS Server (via the Disconnect() method) before
shutting down is an important part of the client application functionality. The
Disconnect() method closes the socket connection between the client
application and CTI OS. On most switches, it does not log the agent out. If no
logout request was issued before the Disconnect(), then on most switches the
agent stays logged into the instrument even after the client application has shut
down.

Note Disconnect is a higher priority method than all others. Before calling Disconnect,
ensure that all prior requests have completed lest the call to Disconnect may abort
these requests. For example, calling Disconnect immediately after calling Logout
may result in an agent not being logged out.

Upon Disconnect(), each object maintained by the Session (Call, Skillgroup,
Wait) is released and no further events are received. Cleaning up the Agent object
is the developer’s responsibility since it was handed to the Session (via the
SetAgent() method.

Code sample:

In the C++ and COM CIL Only, To disconnect from CTIOS Server when the
session mode has not yet been established by means of calling either
CCtiOsSsession::SetAgent(...) or CCtiOsSsession::SetMessageFilter(...),
Disconnect must be called with an arguments array that contains the
CTIOS_FORCEDDISCONNECT set to True.

m_session.Disconnect
4-42
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Logging In and Logging Out an Agent
// Perform disconnect
if(m_ctiSession->GetValueInt(CTIOS_CONNECTIONMODE) ==

eSessionModeNotSet)
{ // If the session mode has not yet been set by SetAgent or

 // SetSessionMode at the time of the
disconnect.

 // we need to indicate the session that a disconnect needs
to

 // be forced
 bool bAllocOk = true;
 Arguments * pDisconnectArgs = NULL;
 bAllocOk = Arguments::CreateInstance(&pDisconnectArgs);

 if ((false==bAllocOk) || (pDisconnectArgs == NULL))
 {

 CDialog::OnClose();
 argsWaitParams.Release();
 return;

 }

 pDisconnectArgs->AddItem(CTIOS_FORCEDDISCONNECT,true);
 m_ctiSession->Disconnect(*pDisconnectArgs);
 pDisconnectArgs->Release();
}
else
{
 m_ctiSession->Disconnect();
}

Logging In and Logging Out an Agent

How to Log In an Agent
When the connection to the CTIOS Server is established and the mode set, you
log in the agent.

Note Before attempting to log in an agent, you would typically request global
configuration data, in order to correctly handle a duplicate log in attempt. For
more information, see the section “How to Get Registry Configuration Values
to Your Desktop Application”.
4-43
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Logging In and Logging Out an Agent
To log in the agent, in the SetAgentModeEvent() event:

Step 1 Create an instance of the Arguments class.

Step 2 Set log in values for the agent in the Arguments instance.

Note The properties required for the agent depend on the type of ACD you are
using. The following example demonstrates the required properties for IPCC.

Step 3 Log in the agent.

The following example, which assumes the Agent object has been created,
demonstrates this task in Java:

public void SetAgentMode(Arguments rArgs) {
 /* 1. Create Arguments object*/
 Arguments rArgs = new Arguments();

 /* 2. Set log in values.*/
 rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTID, “275”);
 rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PERIPHERALID, “5002”);
 rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTINSTRUMENT, “5002”)
 rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTPASSWORD, “********”);
 rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AUTOLOGIN, “1”);

 /* 3. Log in the agent.*/
 int returnValue = agent.Login(rArgs);
}

Note It is the client application’s responsibility to keep track of whether the log in
attempt is the first attempt, or during failover, and branch accordingly in the
SetAgentMode() event to avoid calling the Login() method during failover.

The Login() method generates the following events:

 • QueryAgentStateConf()

 • AgentStateEvent(), if the agent is unknown or is logged out.
4-44
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Logging In and Logging Out an Agent
Note The client application receiving the these events must check both the
ENABLE_LOGOUT and ENABLE_LOGOUT_WITH_REASON bitmasks.
For more information, see What to do in the OnButtonEnablementChange()
Event, page 4-57.

When not successful, the Login() method generates the eControlFailureConf()
event.

How to Handle Duplicate Log In Attempts

Overview

A duplicate log in attempt is when an agent who is already logged in tries to log
in a second time using the same ID. Desktop applications must account for such
a possible situation and have a plan for dealing with it.

You can handle duplicate log in attempts in three ways:

 • Allow the Duplicate Log In with No Warning

 • Allow the Duplicate Log In with a Warning

 • Do not allow a duplicate log in.

You control how duplicate log in attempts are handled in two ways:

 • By configuring how duplicate log in attempts are to be handled on a global
basis by creating custom values in the CTI OS Server Registry. By using
custom values in the CTI OS Server registry to control how duplicate log in
attempts are handled, and downloading these settings to your desktop
application as described on page 4-50, you can enable flexibility without
having to modify your desktop application code.

 • By implementing code in your desktop application to detect then to handle
the duplicate log in attempt error according to the custom values in the CTI
OS Server Registry. You can write code to handle duplicate log in attempts in
each of the three ways listed above. Then when you must change how such
attempts are handled, you would simply change the registry settings; you
would then not need to change the desktop application code.
4-45
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Logging In and Logging Out an Agent
How to Create Values in the CTI OS Server Registry to Control Duplicate Log In
Attempts

You can create keys in the CTI OS Server Registry that will instruct desktop
applications to handle duplicate log in attempts in a specific way.

Warning Two keys exist by default in the registry that are used by the CTI OS CIL:
WarnIfAlreadyLoggedIn and RejectIfAlreadyLoggedIn. You must not use
these keys in your desktop application. You must instead create other keys
as described in this section.

You should create two custom values:

 • custom_WarnIfAgentLoggedIn

 • custom_RejectIfAgentLoggedIn

The custom keys you create can be set to 0 (False) or 1 (True).

The following table lists the settings to use to control how duplicate log in
attempts are to be handled:

To create keys to control duplicate log in attempts:

Goal
custom_WarnIfAgentLog
gedIn

custom_RejectIfAgentLo
ggedIn

To warn the agent of the
duplicate log in attempt,
but to allow the agent to
proceed

1 0

To allow the agent to
proceed with the
duplicate log in attempt
with no warning

0 0

To not allow the agent to
proceed with a duplicate
log in attempt

0 or 1 1
4-46
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Logging In and Logging Out an Agent
Step 1 Open the registry and navigate to: HKEY_LOCAL_MACHINE\Software\Cisco
Systems, Inc.\CTIOS\[CTI Instance
Name]\CTIOS1\EnterpriseDesktopSettings\AllDesktops\Login\ConnectionProfil
es\Name\[Profile Name].

Step 2 Right click in the registry window and select New->DWord Value. The new value
appears in the window.

Step 3 Change the value name to custom_WarnIfAgentLoggedIn.

Step 4 Double-click the value to open the Edit DWORD Value dialog box.

Step 5 Enter 1 in the Value data field to set the value to true, or 0 to set it to false.

Step 6 Repeat steps 2 through 5 for the value custom_RejectIfAgentLoggedIn.

How to Get Registry Configuration Values to Your Desktop Application

To get CTI OS registry configuration values to your desktop application, in order
to handle duplicate log in attempts correctly, you must request global
configuration settings, then extract the custom settings from the event. You would
typically do this task before attempting to log in an agent, in the OnConnection()
event.

Step 1 Create an instance of the Arguments class.

Step 2 In the Arguments instance, set the value for the CTIOS_DESKTOPTYPE key to
either:

 • CtiOs_Enums.DesktopType.eAgentDesktop

 • CtiOs_Enums.DesktopType.eSupervisorDesktop

Note Although the Arguments object must have one of these fields as a
value for the CTIOS_DESKTOPTYPE key, this version of CTI OS
does not utilize the desktop type parameter when sending global
configuration data to a desktop application. Regardless of which field
you use in defining the Arguments object, CTI OS returns all global
configuration data with the OnGlobalSettingsDownloadConf() event.
The desktop type indicators, through currently required, are reserved
for future use.
4-47
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Logging In and Logging Out an Agent
Step 3 Request desktop settings for the session using the RequestDesktopSettings()
method. This results in a OnGlobalSettingsDownloadConf() event.

The following example demonstrates steps 1 through 3 in Java:

/* 1. Create Arguments object*/
Arguments rArgs = new Arguments();

/* 2. Set the desktop type.*/
rArgs.SetValue(“CTIOS_DESKTOPTYPE”,
 CtiOs_Enums.DesktopType.eAgentDesktop);

/* 3. Request desktop settings. This should cause CTI OS to send the
OnGlobalSettingsDownloadConf event.*/
int returnValue = session.RequestDesktopSettings(rArgs);

Step 4 Then, in the OnGlobalSettingsDownloadConf() event, get the Arguments instance
for Login configuration from the event Arguments parameter. Use the S_LOGIN
key from the CtiOs_IKeywordIDs interface.

Step 5 Get the Arguments instance for the correct switch from the Login Arguments
instance. The example below uses the “IPCC/SoftACD” login configuration
information, the key for which is established by the CTI OS Server installation.

Step 6 Get the Integer instances for the custom values you established for the key in the
CTI OS Server registry.

Step 7 For convenience, get the int values for those Integers to test with, as described in
the section How to Handle Duplicate Log In Attempts, page 4-45.

The following example demonstrates steps 4 through 7 in Java:

void OnGlobalSettingsDownloadConf(Arguments rArgs) {

 /* 4. Get the Arguments instance for the Login configuration
 information from the event Arguments parameter.*/

 Arguments logInArgs = rArgs.getValueArray(CTIOS_LOGIN);

/* 5. Get the Arguments instance for the Connection Profile
from the Login Arguments instance. */

Arguments connectionProfilesArgs =
logInArgs.GetValueArray(CTIOS_CONNECTIONPROFILES);

/* 6. Get the Arguments instance for the specific switch from the
Connection
Profiles instance */
4-48
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Logging In and Logging Out an Agent
Arguments IPCCLogInArgs =
connectionProfilesArgs.GetValueArray("IPCC/SoftACD")

/* 7. Get the Integer instances for the custom values you entered in
the CTI OS Server registry.*/

 Integer warningIntObj =
IPCCLogInArgs.GetValueIntObj(“custom_WarnIfAgentLoggedIn”);

 Integer rejectIntObj
=IPCCLogInArgs.GetValueIntObj(“custom_RejectIfAgentLoggedIn”);

/* 8. Get the int values for those object to test later.*/

 custom_WarnIfAgentLoggedIn = warnIntObj.intValue();
 custom_RejectIfAgentLoggedIn = rejectIntObj.intValue();
}

How to Detect the Duplicate Log In Attempt in the Desktop Application

You detect the duplicate log in attempt in the OnQueryAgentStateConf() event,
which is sent after the application calls SetAgent():

Step 1 Get the agent state value from the Arguments instance passed to the event.

Step 2 Test the agent state value in the CtiOs_Enums.AgentState interface, as follows.

(state != eLogout) && (state != eUnknown)

Step 3 If the test is true, handle the duplicate log in attempt as described in the next
section.

The following example demonstrates this task in Java:

public void eQueryAgentStateConf(Arguments rArgs) {
 /* 1. Get the agent state value*/
 Short agentState = rArgs.getValueShortObj(CTIOS_AGENTSTATE)

 /*Test the agent state*/
 if (agentState.intValue() != eLogout
 && agentState.intValue() != eUnknown) {

 /*If the agent is logged in, handle duplicate log in attempt.*/
 }
}

4-49
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Logging In and Logging Out an Agent
How to Handle Duplicate Log In Attempts in the Desktop Application

If you detect from the OnQueryAgentStateConf() event that the agent is already
logged in as described in the previous section, do the following:

 • If your custom_WarnIfAgentLoggedIn = 1 and
custom_RejectIfAgentLoggedIn = 0, notify the user that the agent is already
logged in and proceed with Login() depending on the user’s response.

 • If your custom_RejectIfAgentLoggedIn = 1, notify the user that the agent is
already logged in and Disconnect.

How to Log Out an Agent
To log out an agent:

Step 1 Create an instance of the Arguments class.

Step 2 Set log out values for the agent in the Arguments instance.

Note IPCC requires a reason code to log out. Other switches may have
different requirements.

Step 3 Log out the agent.

The following example demonstrates this task in Java:

/* 1. Create Arguments object*/
Arguments rArgs = new Arguments();

/* 2. Set log out values.*/
rArgs.SetValue(CTIOS_EVENTREASONCODE, 1);

/* 3. Log out the agent.*/
int returnValue = agent.Logout(rArgs);
4-50
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Logging In and Logging Out an Agent
Typical Logout Procedure

When the Logout button is clicked – the following actions need to happen:

1. Call Logout request on your current agent.
You need to call Logout and not use SetAgentState(eLogout), because Logout
provides additional logic to support pre-Logout notification, Logout failure
notification, and resource cleanup.
Here’s the sample code for the same:

if(m_ctiAgent)
{
 Arguments &rArgAgentLogout = Arguments::CreateInstance();

 //add reason code if needed
 rArgAgentLogout.AddItem(CTIOS_EVENTREASONCODE, reasonCode);
 int nRetVal = m_ctiAgent->Logout(rArgAgentLogout);
 rArgAgentLogout.Release();
}

2. Receive a response for the Logout request.
You can expect the following events in response to a Logout request:

 – OnAgentStateChange (with Logout agent state)
or
OnControlFailure (with the reason for the failure).

 – OnPostLogout (you will additionally receive this event if the Logout
request succeeds.

Note Note that you may disable statistics either prior to issuing the Logout
request or upon receipt of the OnAgentStateChange to logout state. Use
the OnPostLogout event to trigger session disconnect. This will guarantee
that all event listeners can make CTIOS server requests in response to the
logout OnAgentStateChange event.

See the following example code:

void CMyAppEventSink::OnPostLogout(Arguments & rArguments)
{
 // Do not Disconnect if the reason code is Forced Logout
 // (particular failover case):
 int nAgentState = 0;
 if (rArguments.GetValueInt(CTIOS_AGENTSTATE, &nAgentState))
 {
4-51
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Logging In and Logging Out an Agent
 if (nAgentState == eLogout)
 {
 int nReasonCode = 0;
 if (rArguments.GetValueInt(CTIOS_EVENTREASONCODE,

&nReasonCode))
 {
 if (CTIOS_IPCC_FORCED_LOGOUT_REASON_CODE ==

(unsigned short)nReasonCode)
 {
 return;
 }
 }
 }
 }

 //Disconnect otherwise
 if(IsConnected()) //if session is connected
 {
 if(m_ctiSession)
 {
 m_ctiSession->Disconnect();
 }
 }
}

3. If you are not concerned with whether the agent is successfully logged out
prior to disconnect, issue a session Disconnect request without a Logout
request.

4. Additionally, you must wait for OnConnectionClosed before destroying
Agent and Session objects. This will guarantee that the CIL has completed
cleanup of the Session object prior to your calling Release on these objects.

5. Ensure that the agent object is set to NULL in the session before you Release
the session object. For example, whenever your application is exiting and you
are disconnecting the session object (e.g. when the user closes your
application's window) you should do something similar to the code below:

if (m_ctiSession)
{

m_ctiSession->Disconnect();

// stop all events for this session
int nRetVal =

m_pctiSession->RemoveAllInOneEventListener((IAllInOne *)
m_pmyEventSink);
4-52
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Calls
//The application is closing, remove current agent from session
CAgent * pNullAgent = NULL;
m_Session->SetAgent(*pNullAgent);
m_Session->Release();
m_Session = NULL;

}

if(m_ctiAgent)
{

m_ctiAgent->Release();
m_ctiAgent = NULL;

}

if (m_pmyEventSink)
{

m_pmyEventSink->Release();
m_pmyEventSink = NULL;

}

Working with Calls

Handling Multiple Calls
It is critical that you design an Agent Mode desktop application to be able to store
all the calls on the specific device, in order to do the following:

 • Apply incoming events to the correct call

 • Select the correct call on which to make method calls (i.e. telephony requests)

It is not necessary to maintain a set of Call Objects in order to do this. Instead, the
application could store the string UniqueObjectID of each call (keyword
CTIOS_UNIQUEOBJECTID). CTIOS_UNIQUEOBJECTID is always included
in the args parameter for each call event. The actual Call Object can be obtained
with the Session object's GetObjectFromObjectID() method in order to make a
method call.
4-53
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Calls
What is the Current Call?
The CIL maintains a concept of a Current Call, which is the call for which the last
OnButtonEnablementChange() event was fired. Knowing which call is the
Current Call is useful when there are multiple components which set and act on
the Current Call, such as telephony ActiveX Controls.

The CTI OS ActiveX controls included in the CTI OS Toolkit use the concept of
the Current Call. The CallAppearance grid control sets the Current Call when the
user clicks on a particular call in the grid. Then when the user clicks the Answer
control, this control must get the Current Call in order to call the Answer() method
on the correct call.

The Current Call is set according to the following rules:

 • When there is only 1 call on a device, the CIL sets it to the Current Call.

 • When there are multiple calls on a device and an application wants to act on
a call that is not the Current Call, it sets a different call to the Current Call
with the SetCurrentCall() method.

 • When the call which is the Current Call ends, leaving multiple calls on the
device, the application must set another call to be the Current Call.

 • Whenever the Current Call is set to a different call, OnCurrentCallChanged()
event is fired as well as an OnButtonEnablementChange() event.

How to Get a Call Object
You can get the Call object from the session using the GetObjectFromObjectID()
method.

The following code fragment, which assumes that existing Call Unique Identifiers
are stored in an array called UIDArray, shows how to get a specific Call object in
Java:

String sThisUID = UIDArray[Index];
Call ThisCall = (Call) m_Session.GetObjectFromObjectID(sThisUID);
4-54
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Calls
How to Set the Current Call for the Session
To set the current call you use the SetCurrentCall() method for the Session. The
following code fragment, which assumes you retrieved the Call object as
described in the previous section, shows how to set the current call.

The following line shows this in Java:

m_Session.SetCurrentCall(ThisCall);

Call Wrapup
The agent/supervisor desktop will need to behave differently at the end of a call
depending on factors including:

 • the direction of the call (inbound or outbound)

 • configuration of IPCC or the ACD (whether wrapup data is required,
optional, or not allowed)

 • configuration of CTIOS server

The CTI Toolkit Combo Desktop .NET sample shows how to use this information
to display a wrapup dialog that allows the agent to select from a set of
pre-configured wrapup strings after an inbound call goes into wrapup state. (See
ProcessOnAgentStateEvent in SoftphoneForm.cs) On an agent state change
event, if the state changes to WorkReady or WorkNotready state, this indicates
that the agent has transitioned to call wrapup state. The CTI OS server will
provide the following key/value pairs in the event arguments to aid in determining
whether wrapup data may be associated with the call and whether that data is
required or optional.

CTIOS_INCOMINGOROUTGOING indicates the direction of the call. The
defined values are

0 = the direction of the call is unknown

1 = the call is an incoming call and the agent may enter wrapup data

2 = the call is an outgoing call and the agent may not enter wrapup data

This value may be obtained using the GetValueInt method on the Agent object.
4-55
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Calls
CTIOS_WRAPUPOKENABLED indicates whether wrapup data is required for
the recently ended call. A value of false indicates that wrapup data is not required.
A value of true indicates that wrapup data is required. (In the Combo Desktop
sample, this value is used as a boolean to determines whether the "Ok" button on
the wrapup dialog is enabled when no wrapup information has been selected.)
This value may be obtained using the GetValueBool method on the Agent object.

The wrapup strings that are configured on CTI OS server are sent to the client
during the login procedure and are stored under the keyword
CTIOS_INCOMINGWRAPUPSTRINGS as an Arguments array within the
Agent object. They can be obtained using the GetValueArray method on the Agent
object. For information on how to configure wrapup strings on CTI OS server see
Chapter 4 of the CTIOS System Manager's Guide.

Logout and NotReady Reason Codes
Depending upon the configuration of IPCC or the configuration of CTIOS server,
the agent/supervisor desktop may be required to supply a reason code when
requesting an agent state change to Logout or NotReady state. The CTI Toolkit
Combo Desktop .NET sample provides examples of how to implement reason
codes in an agent/supervisor desktop. (See the btnLogout_Click and
btnNotReady_Click methods in SoftphoneForm.cs)

CTI OS server informs the CTI OS client of this configuration during the login
process and the information is stored in the following properties on the Agent
object:

CTIOS_LOGOUTREASONREQUIRED - This boolean value indicates
whether a reason code is required for logout. A value of true indicates that a
reason code is required. A value of false indicates that a reason code is not
required. This value can be obtained using the GetValueBool method on the Agent
object.

CTIOS_LOGOUTREASONCODES - This Arguments array provides a list of
the logout reason codes configured on CTIOS server. They can be obtained using
the GetValueArray method on the Agent object.

CTIOS_NOTREADYREASONREQUIRED - This boolean value indicates
whether a reason code is required when setting an agent to NotReady state. A
value of true indicates that a reason code is required. A value of false indicates
that a reason code is not required. This value can be obtained using the
GetValueBool method on the Agent object.
4-56
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Calls
CTIOS_NOTREADYREASONCODES - This Arguments array provides a list
of the not ready reason codes configured on CTIOS server. They can be obtained
using the GetValueArray method on the Agent object.

When Does the Application Receive the
OnButtonEnablementChange() Event?

An application receives an OnButtonEnablementChange() event in the following
situations:

 • When the Current Call is changed.

 • When the call which is the Current Call receives an event which includes a
CTIOS_ENABLEMENTMASK argument. Usually the included enablement
mask is changed from what it was set to, but occasionally it is the same. This
mask is used to indicate which functions are allowed for this Call in its
current state.

For example, when a Call receives an OnCallDelivered() event with a
Connection State of LCS_ALERTING, its enablement mask is changed to set
the Answer bit. When this Call is answered, and it receives the
OnCallEstablished() event, the mask no longer sets the Answer bit, but
instead enables the Hold, Release, TransferInit and ConferenceInit bits.

What to do in the OnButtonEnablementChange() Event

To see if a button should be enabled, simply do a bitwise "AND" with the
appropriate value listed in the Table included under the
OnButtonEnablementChange event in Chapter 6.

The following examples shows this in Java:

Integer IMask = rArgs.GetValueIntObj(CTIOS_ENABLEMENTMASK);
if (null != IMask) {
 int iMask = IMask.intValue();
 if (iMask & ENABLE_ANSWER) {
 //Enable the AnswerCall button
 }
 else {
 //Disable the AnswerCall button
 }
}
// else do nothing
4-57
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Calls
Checking Not Ready Bitmasks in OnButtonEnablementChange() Event

A client application receiving the OnButtonEnablementChange() event must
check both the ENABLE_NOTREADY and
ENABLE_NOTREADY_WITH_REASON bitmasks in the event.

Caution Failure to check both the ENABLE_NOTREADY and
ENABLE_NOTREADY_WITH_REASON bitmasks may lead to problems
properly displaying a NotReady control to the agent.
4-58
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Calls
The following example shows this in Java:

void OnButtonEnablementChange(Arguments rArguments) {
 m_appFrame.LogEvent("OnButtonEnablementChange", rArguments);

 // Get mask from message
 Long LMask = rArguments.GetValueUIntObj(CTIOS_ENABLEMENTMASK);
 if (null==LMask)
 return;

 final long bitMask = LMask.longValue();

 /* Transfer modification of the GUI objects to the
EventDispatchThread or we could have a thread sync issue. We're
currently on the CtiOsSession's event thread.*/

 SwingUtilities.invokeLater(new Runnable() {
 public void run() {

 /* Enable a button if it's bit is
turned on. Disable it if not.*/

 m_appFrame.m_btnAnswer.setEnabled (((bitMask & ENABLE_ANSWER) > 0));
 m_appFrame.m_btnConference.setEnabled
 (((bitMask & ENABLE_CONFERENCE_COMPLETE) > 0));
 m_appFrame.m_btnCCConference.setEnabled
 (((bitMask & ENABLE_CONFERENCE_INIT) > 0));
 m_appFrame.m_btnHold.setEnabled (((bitMask & ENABLE_HOLD) > 0));
 m_appFrame.m_btnLogin.setEnabled (((bitMask & ENABLE_LOGIN)> 0));
 m_appFrame.m_btnLogout.setEnabled
 (((bitMask & (ENABLE_LOGOUT |
 CtiOs_Enums.ButtonEnablement.ENABLE_LOGOUT_WITH_REASON)) >
 0));
 m_appFrame.m_btnMakeCall.setEnabled
 (((bitMask & ENABLE_MAKECALL) > 0));
 m_appFrame.m_btnNotReady.setEnabled(((bitMask & (ENABLE_NOTREADY |
 ENABLE_NOTREADY_WITH_REASON)) > 0));
 m_appFrame.m_btnReady.setEnabled(((bitMask & ENABLE_READY) > 0));
 m_appFrame.m_btnRelease.setEnabled(((bitMask & ENABLE_RELEASE)> 0));
 m_appFrame.m_btnRetrieve.setEnabled
 (((bitMask & ENABLE_RETRIEVE) > 0));
 m_appFrame.m_btnSSTransfer.setEnabled
 (((bitMask & ENABLE_SINGLE_STEP_TRANSFER)> 0));
 m_appFrame.m_btnSSConference.setEnabled
 (((bitMask & ENABLE_SINGLE_STEP_CONFERENCE) > 0));
 m_appFrame.m_btnTransfer.setEnabled
 (((bitMask & ENABLE_TRANSFER_COMPLETE)> 0));
 m_appFrame.m_btnCCTransfer.setEnabled
 (((bitMask & ENABLE_TRANSFER_INIT) > 0));
4-59
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Making Requests
 }
 });
} // OnButtonEnablementChange

OnButtonEnablementChange() Event in Supervisor Desktop Applications

When a supervisor desktop application processes an
OnButtonEnablementChange() event, the application should check for the
CTIOS_MONITORED parameter and ignore this parameter if it is present and is
TRUE. In a supervisor desktop application, the OnButtonEnablementChange()
event can reflect button enablement for either a monitored team member or the
supervisor.

Making Requests
Telephony requests are made through either an Agent object or a Call object by
calling the appropriate API methods listed in Chapters 9 and 10. It is important to
ensure that a user not be able to make multiple duplicate requests before the first
request has a chance to be sent down to the switch and the appropriate events be
sent back to the application, since this will result in either multiple failures or
unexpected results.

Preventing Multiple Duplicate Requests
Since it is important for a custom application to prevent a user from making a
number of duplicate requests, it should not allow the user to click the same button
many times. In order to do this, it is recommended that a custom application
disable a clicked button until such time as it should be re-enabled, indicating that
it would be all right for the user to click it again.

Some examples of when Sample softphones re-enable a button that has been
clicked and disabled are listed below:

 • re-enable Connect/LoginBtn when:

 – LoginDlg canceled

 – ControlFailure or CTIOSFailure when login is in progress
4-60
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Making Requests
 – In ProcessOnConnectionClosed()

 • re-enable Logout/DisconnectBtn when:

 – Logout ReasonCodes are required & Dlg pops up, but user clicks Cancel

 • re-enable NotReadyBtn when:

 – NotReady ReasonCodes are required & Dlg pops up, but user clicks
Cancel

 • re-enable DialBtn, TransferBtn or ConferenceBtn when:

 – DialPad was closed with Cancel rather than Dial, depending on which
was originally clicked

 • re-enable TransferBtn & ConferenceBtn when

 – received ControlFailure with MessageType parameter set to
eConsultationCallRequest

 • re-enable EmergencyBtn when

 – received ControlFailure with MessageType parameter set to
eEmergencyCallRequest

 • re-enable SupervisorAssistBtn when

 – received ControlFailure with MessageType parameter set to
eSupervisorAssistRequest

 • re-enable any AgentStateBtn when

 – received ControlFailure with MessageType parameter set to
eSetAgentStateRequest & lastAgentStateBtnClicked was the appropriate
one

 • re-enable any of the buttons when

 – received OnButtonEnablementMaskChange indicating the button should
be enabled.
4-61
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Events
Working with Events

Handling Events in Order
A desktop application using the CTI OS API must handle events in the order they
are sent by CTI OS.

Warning Because many events include agent state data and button enablement data
indicating valid agent state transitions, if events are handled out of order
agents may not be presented with valid options.

Coding Considerations for CIL Event Handling
The CTI OS CIL fires events to the application in a single thread. It is
recommended that the amount of time spent in a particular CIL event handler be
kept to a minimum so as to ensure timely delivery of subsequent CIL events. If a
screenpop based on a call event (such as the OnCallDelivered event or the
OnCallDataUpdate event) takes longer than a few seconds (for example, remote
database lookup), it is recommended to delegate this operation to a separate
thread or separate process so as not to block CTIOS event handling.

Note The order of arrival of CIL events is highly dependent upon the ACD that is in use
at the customer site. Therefore CIL event order is not guaranteed. Do not write
your event handling code in a manner that relies on a particular event order.

If an application calls a COM CIL API method from a COM CIL event callback
routine it must ensure that the method call is made on the same thread as the CIL
event callback. This rule applies to the following methods:

 • CComSession::SetCurrentCall

 • CComSession::SetAgent

This rule must be followed in order to guarantee that events are fired from the
COM CIL to the application in the proper sequence.
4-62
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Agent Statistics
When handling events in the browser using JavaScript, event processing time
should be kept to a minimum since all other JavaScript execution (e.g., handling
of button clicks) may be blocked during handling of the event.

Monitoring the OnCallEnd() Event
A Monitor Mode application that monitors any Call-related events must also
monitor the OnCallEnd() event.

Warning The Call object in the CTI OS CIL is only deleted when the OnCallEnd() event
is received. If the OnCallEnd() and OnCallDataUpdate() events are not
monitored, Call objects will accumulate and cause a memory leak.

Working with Agent Statistics

Overview
This section describes how to work with agent statistics and contains the
following subsections:

 • “How to Set Up an Agent Application to Receive Agent Statistics” on
page 4-64

 • “How to Set Up a Monitor-Mode Application to Receive Agent Statistics” on
page 4-65

 • “Accessing Agent Statistics” on page 4-69

 • “Changing Which Agent Statistics are Sent” on page 4-70

 • “Agent Statistics Computed by the Sample CTI OS Desktop” on page 4-71
4-63
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Agent Statistics
How to Set Up an Agent Application to Receive Agent Statistics
To set up an Agent application to receive agent statistics:

Step 1 Create an instance of the Session class, as described on page 4-29.

Step 2 Subscribe for events for the session, as described on page 4-30.

Note You must register to receive agent and session events; therefore, in the
AddEventListener() method you must use as parameters the field
CtiOs_Enums.SubscriberList.eAgentList and
CtiOs_Enums.SubscriberList.eSessionList. Or you can use the
CtiOs_Enums.SubscriberList.eAllInOneList.

Step 3 Set connection parameters, as described on page 4-30.

Step 4 Connect the desktop application to the CTI OS Server, as described on page 4-31.

Step 5 In the OnConnection() event handler, set the Agent for the session, as described
on page 4-34.

Step 6 Log in the agent, as described on page 4-43.

Step 7 Enable agents statistics using the EnableAgentStatistics() method.

Note Although the EnableAgentStatistics() method requires an Arguments
parameter, there are no parameters to set for agent statistics; you can
therefore send an empty Arguments instance as a parameter.

Caution The agent must be logged in before you can use the EnableAgentStatistics()
method.

Step 8 To disable agents statistics, use the DisableAgentStatistics() method.
4-64
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Agent Statistics
The following example demonstrates this task in Java:

/* 1. Create session.*/
CtiOsSession rSession = new CtiOsSession();

/* 2. Add event listener.*/
rSession.AddEventListener(this,
 CtiOs_Enums.SubscriberList.eAgentList);

/* 3. Set Connection values.*/
Arguments rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSA, “CTIOSServerA”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTA, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSB, “CTIOSServerB”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTB, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_HEARTBEAT, 100);

/*4. Connect to server.*.
returnCode = rSession.Connect(rArgs);

public void OnConnection(Arguments rArgs) {

 /*5. Set agent for the session. */
 returnCode = rSession.SetAgent(agent);

 /* 6. Log in the agent.*/
 Arguments rArgs = new Arguments();
 rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTID, “275”);
 rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PERIPHERALID, “5002”);
 rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTINSTRUMENT, “5002”)
 rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTPASSWORD, “********”);
 returnCode = agent.Login(rArgs);

 /* 7. Enable Agent statistics. */
 if (returnCode == CIL_OK) {
 agent.EnableAgentStatistics(new Arguments());
 }
}

How to Set Up a Monitor-Mode Application to Receive Agent
Statistics

To set up a Monitor-mode application to receive agent statistics, follow the
instructions below.
4-65
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Agent Statistics
Note The agent to monitor must be logged in Agent mode before a Monitor-mode
application can receive statistics for that agent.

CTI OS has a limitation in providing monitor-mode support to build agent
desktop call-control applications, as well as in terms of having the ability to
rely on button enablement messages.

Step 1 Create an instance of the Session class, as described on page 4-29.

Step 2 Subscribe for events for the session, as described on page 4-30.

Note You must register to receive agent events; therefore, in the
AddEventListener() method you must use as a parameter the field
CtiOs_Enums.SubscriberList.eAgentList.

Step 3 Set connection parameters, as described on page 4-30.

Step 4 Connect the desktop application to the CTI OS Server, as described on page 4-31.

Step 5 Set a String variable to store the ID of the agent for which you want statistics.

Note The application must be aware of the Agent ID and the agent’s
Peripheral ID for any agent to monitor; the application cannot
dynamically get these values from CTI OS Server.

Step 6 Set the message filter as described on page 4-38.

a. Create String for the filter using the keyword CTIOS_MESSAGEID as the name,
and “*;agentID” as the value.

Note The “*;” indicates all events for that agent.

b. Create an instance of the Arguments class.

c. Set the value in the filter for the CTIOS_FILTER keyword to the String
created in Step a.
4-66
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Agent Statistics
d. Use the SetMessageFilter() method in the Session class to set the filter for the
session, using the Arguments instance you created in Step b as a parameter.

Step 7 Wait for any event for the agent, to ensure that the Agent instance exists for the
Session.

Caution The application must wait for the first event for this agent before
continuing, to ensure that the Agent instance is part of the current
session.

Note This example uses a Wait object to wait.

Step 8 Get the Agent instance from the Session using GetObjectFromObjectID()
method.

Step 9 Enable agents statistics using the EnableAgentStatistics() method.

Note Although the EnableAgentStatistics() method requires an Arguments
parameter, there are no parameters to set for agent statistics; you can
therefore you an empty Arguments instance as a parameter.

Caution The agent must be logged in before you can use the EnableAgentStatistics()
method.

Step 10 To disable agents statistics, use the DisableAgentStatistics() method.
4-67
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Agent Statistics
The following example demonstrates this task in Java:

/* 1. Create session.*/
CtiOsSession rSession = new CtiOsSession();

/* 2. Add event listener.*/
rSession.AddEventListener(this,
 CtiOs_Enums.SubscriberList.eAgentList);

/* 3. Set Connection values.*/
Arguments rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSA, “CTIOSServerA”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTA, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSB, “CTIOSServerB”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTB, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_HEARTBEAT, 100);

/*4. Connect to server.*.
int returnCode = rSession.Connect(rArgs);

/*5. Set String to AgentID*/
String UIDAgent = “agent.5000.5013”;

/*6. Set the message filter. */
String filter = “MessageId=*;AgentId=5013;
rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_FILTER, filter);
returnCode = rSession.SetMessageFilter(rArgs);

/*7. Wait for agent events.*/

rArgs = new Arguments();

// Create a wait object in the session
WaitObject rWaitObj = rSession.CreateWaitObject(rArgs);

// Load the events into the Args for the wait object
rArgs.SetValue("Event1", eAgentStateEvent);
rArgs.SetValue("Event2", eQueryAgentStateConf);
rArgs.SetValue("Event3", eControlFailureConf);
rArgs.SetValue("Event4", eCTIOSFailureEvent);

// Set the mask for the WaitObject
rWaitObj.SetMask(rArgs);

// Wait for up to 9 seconds, and then give up
if (rWaitObj.WaitOnMultipleEvents(9000) != EVENT_SIGNALED)
{
 // Handle error ...
4-68
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Agent Statistics
 return;
}

// Find out what triggered the wait
int iEventID = rWaitObj.GetTriggerEvent();
if (iEventID == eControlFailureConf|| iEventID == eCTIOSFailureEvent)
{
 // Handle error ...
 return;
}

Accessing Agent Statistics

Overview

Once the applications are set up to receive agent statistics, as described in the
preceding section, you can access agent statistics in two ways:

 • By implementing the eOnNewAgentStatisticsEvent() (in Java) or the
OnAgentStatistics() event (in C++, COM, or VB 6.0)

Caution Note carefully that the name of the event through which to access
agent statistics is different in Java than it is in other languages
supported by CTI OS.

 • Through the Agent instance itself

The rest of this section describes these methods for accessing agent statistics.

Registering to the eOnNewAgentStatisticsEvent() (JAVA)

To register to receive agent statistics, you must include the
eOnNewAgentStatisticsEvent() in the message filter.

For example, in Java, the message filter to receive agent statistics is:

String filter = S_MESSAGEID + “=" +
 CtiOs_Enums.EventID.eNewAgentStatisticsEvent;

For more information on message filters, see page 4-37.
4-69
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Agent Statistics
Registering to the OnAgentStatistics() (C++, COM, and VB)

To register to receive agent statistics, you must include the OnAgentStatistics()
event in the message filter.

For more information on message filters, see page 4-37.

How to Get Agent Statistics through the Agent Instance

Once you have used the EnableAgentStatistics() method for the agent, agent
statistics are available through that Agent instance.

To get the agent statistics

Step 1 Get the Arguments instance containing statistics from the Agent instance using
the GetValueArray() method.

Step 2 Parse the Arguments instance as needed to get specific statistics.

The following example demonstrates this task in Java:

/* 1. Get Arguments instance.*/
Arguments rArgs =
agent.GetValueArray(CtiOs_IKeywordIDs.CTIOS_STATISTICS);

/* 2. Parse as necessary. For example:*/
int availTimeSession =
rArgs.GetValueIntObj(CtiOs_IKeywordIDs.CTIOS_AVAILTIMESESSION);

Changing Which Agent Statistics are Sent
You can change which agent statistics are sent to applications by modifying the
registry on the CTI OS Server.

For information on how to change which agent statistics are sent to applications
by default, see the CTI OS System Manager's Guide for Cisco ICM/IPCC
Enterprise & Hosted Editions.
4-70
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Agent Statistics
Agent Statistics Computed by the Sample CTI OS Desktop
The sample CTI OS Desktop are computes many agent statistics from data
received from CTI Server. You may choose to develop applications that compute
these same statistics. Therefore, these computed statistics (in italics) and the data
and formulas used to derive them are listed below:

 • AvgTalkTimeToday = (AgentOutCallsTalkTimeToday +
HandledCallsTalkTimeToday) / (AgentOutCallsToday +
HandledCallsToday)

 • CallsHandledToday = AgentOutCallsToday + HandledCallsToday

 • TimeLoggedInToday = LoggedOnTimeToday

 • TimeTalkingToday = AgentOutCallsTalkTimeToday +
HandledCallsTalkTimeToday

 • TimeHoldingToday = AgentOutCallsHeldTimeToday +
IncomingCallsHeldTimeToday

 • TimeReadyToday = AvailTimeToday

 • TimeNotReadyToday = NotReadyTimeToday

 • AvgHoldTimeToday = (AgentOutCallsHeldTimeToday +
IncomingCallsHeldTimeToday) / (AgentOutCallsToday +
HandledCallsToday)

 • AvgHandleTimeToday = (AgentOutCallsTimeToday +
HandledCallsTimeToday) / (AgentOutCallsToday + HandledCallsToday)

 • AvgIdleTimeToday = NotReadyTimeToday / (AagentOutCallsToday +
HandledCallsToday)

 • PercentUtilitizationToday = (AgentOutCallsTimeToday +
HandledCallsTimeToday) / (LoggedOnTimeToday + NotReadyTimeToday)
4-71
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Skill Group Statistics
Working with Skill Group Statistics

Overview
This section describes how to receive and work with skill group statistics in a
server-to-server integration environment and contains the following subsections:

 • “How to Set Up a Monitor-Mode Application to Receive Skill Group
Statistics” on page 4-72

 • “Accessing Skill Group Statistics” on page 4-75

 • “Changing Which Skill Group Statistics are Sent” on page 4-76

 • “Skill Group Statistics Computed by the Sample CTI OS Desktop” on
page 4-76

How to Set Up a Monitor-Mode Application to Receive Skill
Group Statistics

To set up a Monitor-mode application to receive skill group statistics:

Step 1 Create an instance of the Session class, as described on page 4-29.

Step 2 Subscribe for events for the session, as described on page 4-30.

Note You must register to receive session and skill group events; therefore,
in the AddEventListener() method you must use as a parameter the
field CtiOs_Enums.SubscriberList.eAllInOneList, or you must call
the method twice using the fields
CtiOs_Enums.SubscriberList.eSessionList and
CtiOs_Enums.SubscriberList.eSkillGroupList

Step 3 Set connection parameters, as described on page 4-30.

Step 4 Connect the desktop application to the CTI OS Server, as described on page 4-31.
4-72
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Skill Group Statistics
Step 5 Set the message filter as described on page 4-38.

a. Create String for the filter using the keyword S_FILTERTARGET as the name
and the event keyword (enum or number)
eOnNewSkillGroupStatisticsEvent (numeric value 536871027) as the
value.

b. Create an instance of the Arguments class.

c. Set the value in the filter for the CTIOS_FILTER keyword to the String
created in Step a.

d. Use the SetMessageFilter() method in the Session class to set the filter for the
session, using the Arguments instance you created in Step b as a parameter.

Step 6 Enable individual statistics as needed.

a. Create an instance of the Arguments class.

b. Set values in the Arguments instance. You must provide the skill group
number and the peripheral number for each skill group for which you want to
receive statistics. Use the SetValue(keyword, int) method signature.

For example: use SetValue(CTIOS_SKILLGROUPNUMBER, sgNumber)
where sgNumber is an integer for the skill group for which you want to
receive statistics, and SetValue(CTIOS_PERIPHERALID,
peripheralNumber) where sgNumber is an integer for the skill group for
which you want to receive statistics.

Caution The application must be aware of the Skill Group ID, and the skill
group’s Peripheral ID, for any skill group to monitor; the
application cannot dynamically get these values from CTI OS
Server.

c. Use the Arguments instance as a parameter for the session’s
EnableSkillGroupStatistics() method.

d. Repeat steps b and c for each skill group for which you want to receive events.

Step 7 When the desktop application no longer requires the statistics for a certain skill
group, the application can disable those statistics.

a. Create an instance of the Arguments class.
4-73
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Skill Group Statistics
b. Set values in the Arguments instance. You must provide the skill group
number and the peripheral number for each skill group for which you want to
receive statistics. Use the SetValue(keyword, int) method signature.

For example: use SetValue(CTIOS_SKILLGROUPNUMBER, sgNumber)
where sgNumber is an integer for the skill group for which you want to
receive statistics, and SetValue(CTIOS_PERIPHERALID, sgNumber) where
sgNumber is an integer for the skill group for which you want to stop
receiving statistics.

c. Use the Arguments instance as a parameter for the session’s
DisableSkillGroupStatistics() method.

The following example demonstrates this task in Java:

/* 1. Create session.*/
CtiOsSession rSession = new CtiOsSession();

/* 2. Add event listener.*/
rSession.AddEventListener(this,
 CtiOs_Enums.SubscriberList.eSessionList);
rSession.AddEventListener(this,
 CtiOs_Enums.SubscriberList.eSkillGroupList);

/* 3. Set Connection values.*/
Arguments rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSA, “CTIOSServerA”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTA, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSB, “CTIOSServerB”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTB, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_HEARTBEAT, 100);

/*4. Connect to server.*.
int returnCode = session.Connect(rArgs);

/*5. Set the message filter. */
String filter = S_FILTERTARGET + "=" + CTIOS_SKILLGROUPSTATISTICS;
rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_FILTER, filter);
returnCode = session.SetMessageFilter(rArgs);

/*6. Enable statistics. */
rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_SKILLGROUPNUMBER, sgNumber);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PERIPHERALID, peripheralID);
rSession.EnableSkillGroupStatistics(rArgs);
4-74
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Skill Group Statistics
Accessing Skill Group Statistics

Overview

Once the application is set up to receive skill group statistics, as described in the
preceding section, you access skill group statistics through an event handler. The
name of the event depends on the language of the application:

 • In Java, eOnNewSkillGroupStatisticsEvent()

 • In C++, COM, or VB, OnSkillGroupStatisticsUpdated()

Caution Note carefully that the name of the event through which to access
skill group statistics is different in Java than it is in other languages
supported by CTI OS.

Registering to the eOnNewSkillGroupStatisticsEvent() (JAVA)

To register to receive skill group statistics, you must include the
eOnNewSkillGroupStatisticsEvent() in the message filter.

For example, in Java, the message filter to receive skill group statistics is:

String filter = S_MESSAGEID + “=" +
 CtiOs_Enums.EventID.eNewSkillGroupStatisticsEvent;

For more information on message filters, see page 4-37.

Registering to the OnSkillGroupStatisticsUpdated() (C++, COM, and VB)

To register to receive skill group statistics, you must include the
OnSkillGroupStatisticsUpdated() event in the message filter.

For more information on message filters, see page 4-37.
4-75
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Working with Skill Group Statistics
Changing Which Skill Group Statistics are Sent
You can change which skill group statistics are sent to desktop applications by
modifying the registry on the CTI OS Server.

For information on how to change which skill group statistics are sent to desktop
applications, see the CTI OS System Manager's Guide for Cisco ICM/IPCC
Enterprise & Hosted Editions.

Skill Group Statistics Computed by the Sample CTI OS Desktop
The sample CTI OS Desktop are computes many skill group statistics from data
received from CTI Server. You may choose to develop applications that compute
these same statistics. Therefore, these computed statistics (in italics) and the data
and formulas used to derive them are listed below:

 • AvgCallsQTimeNow = CallsQTimeNow / CallsQNow

 • AvgAgentOutCallsTalkTimeToHalf = AgentOutCallsTalkTimeToHalf /
AgentOutCallsToHalf

 • AvgAgentOutCallsTimeToHalf = AgentOutCallsTimeToHalf /
AgentOutCallsToHalf

 • AvgAgentOutCallsHeldTimeToHalf = AgentOutCallsHeldTimeToHalf /
AgentOutCallsHeldToHalf

 • AvgHandledCallsTalkTimeToHalf = HandledCallsTalkTimeToHalf /
HandledCallsToHalf

 • AvgHandledCallsAfterCallTimeToHalf = HandledCallsAfterCallTimeToHalf
/ HandledCallsToHalf

 • AvgHandledCallsTimeToHalf = HandledCallsTimeToHalf /
HandledCallsToHalf

 • AvgIncomingCallsHeldTimeToHalf = IncomingCallsHeldTimeToHalf /
IncomingCallsHeldToHalf

 • AvgInternalCallsRcvdTimeToHalf = InternalCallsRcvdTimeToHalf /
InternalCallsRcvdToHalf

 • AvgInternalCallsHeldTimeToHalf = InternalCallsHeldTimeToHalf /
InternalCallsHeldToHalf

 • AvgCallsQTimeHalf = CallsQTimeHalf / CallsQHalf
4-76
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Enabling Silent Monitor in your Application
 • AvgAgentOutCallsTalkTimeToday = AgentOutCallsTalkTimeToday /
AgentOutCallsToday

 • AvgAgentOutCallsTimeToday = AgentOutCallsTimeToday /
AgentOutCallsToday

 • AvgAgentOutCallsHeldTimeToday = AgentOutCallsHeldTimeToday /
AgentOutCallsHeldToday

 • AvgHandledCallsTalkTimeToday = HandledCallsTalkTimeToday /
HandledCallsToday

 • AvgHandledCallsAfterCallTimeToday = HandledCallsAfterCallTimeToday /
HandledCallsToday

 • AvgHandledCallsTimeToday = HandledCallsTimeToday /
HandledCallsToday

 • AvgIncomingCallsHeldTimeToday = IncomingCallsHeldTimeToday /
IncomingCallsHeldToday

 • AvgInternalCallsRcvdTimeToday = InternalCallsRcvdTimeToday /
InternalCallsRcvdToday

 • AvgInternalCallsHeldTimeToday = InternalCallsHeldTimeToday /
InternalCallsHeldToday

 • AvgCallsQTimeToday = CallsQTimeToday / CallsQToday

Enabling Silent Monitor in your Application

Note CTIOS Silent Monitor functionality it is only available in C++ and COM CIL.

The silent monitor manager object is responsible for establishing and maintaining
the state of a silent monitor session.

The first thing a client application should do is to create a silent monitor object
instance. The application should then set this object instance as the current
manager in the session object. The CIL provides the interface to this functionality.
A client application can work in one of two possible modes:

 • Monitoring mode. The client receives audio from a remote monitored target
(device/agent).
4-77
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Enabling Silent Monitor in your Application
 • Monitored mode. The client sends audio to a remote monitoring client.

Creating a Silent Monitor Object
The first step towards setting up a silent monitor session is creating a
SilentMonitorManager using the Session object CreateSilentMonitorManager
method. Then, set the new manager object to be the current silent monitor
manager using the Session object SetCurrentSilentMonitor method.

The following VB 6.0 code sample demonstrates how to create a
SilentMonitorManager object with COM CIL and make it the current manager in
the Session object:

Dim errorcode As Long
Dim m_nSMSessionKey As Integer
Dim m_SMManager As CTIOSCLIENTLib.SilentMonitorManager
Dim m_Args As New Arguments
‘Create the silent monitor manager
Set m_SMManager = m_session.CreateSilentMonitorManager(m_Args)
‘Make the object the current manager
errorcode = m_session.SetCurrentSilentMonitorManager(m_SMManager)

Setting the Session Mode
After you set this new object as the current object, set the manager’s work mode
to Monitoring for the monitoring client and Monitored for the monitored client.
The following sections provide code examples. See also Chapter 13,
“SilentMonitorManager Object”for syntax of the StartSMMonitoringMode and
SMMonitoredMode methods.

Monitoring Mode

In this mode the client receives audio, confirmation and session status events for
a specific silent monitor session. This mode is intended for use by client
applications developed for Supervisor desktop functionality. The
StartSMMonitoringMode method on the SilentMonitorManager object selects
this mode.

Following is a code sample for specifying the mode for the client application.
4-78
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Enabling Silent Monitor in your Application
Dim m_Args As New Arguments
‘Assemble arguments to set the work mode
m_Args.AddItem("HeartbeatInterval", 5)
m_Args.AddItem("HeartbeatTimeout", 15)
'Address or hostname of the silent monitor service
m_Args.AddItem("SMSAddr", "localhost")
'Port on which silent monitor service is listening
m_Args.AddItem("SMSListenPort", 42228)
'QoS setting when sending messages to the silent monitor service
m_Args.AddItem("SMSTOS", 0)
'Milliseconds between heartbeats
m_Args.AddItem("SMSHeartbeats", 5000)
'Number of missed heartbeats before the connection to the
'silent monitor service is considered disconnected
m_Args.AddItem("SMSRetries", 3)
‘Port number where audio will be listened for
m_Args.AddItem("MediaTerminationPort", 4000)
‘Set the working mode to monitoring
m_SMManager.StartSMMonitoringMode(args)

Monitored Mode

In this mode, the client sends audio and status reports on silent monitor session
and receives requests for start and stop silent monitor session. This mode is
intended for client applications developed for Agent desktop functionality. The
StartSMMonitoredMode method on the SilentMonitorManager object selects this
mode.

Following is a code sample for specifying the mode for the client application:

Dim m_Args As New Arguments
‘Assemble arguments to set the work mode
m_Args.AddItem("HeartbeatInterval", 5)
m_Args.AddItem("HeartbeatTimeout", 15)
'Address or hostname of the silent monitor service
m_Args.AddItem("SMSAddr", "localhost")
'Port on which silent monitor service is listening
m_Args.AddItem("SMSListenPort", 42228)
'QoS setting when sending messages to the silent monitor service
m_Args.AddItem("SMSTOS", 0)
'Milliseconds between heartbeats
m_Args.AddItem("SMSHeartbeats", 5000)
'Number of missed heartbeats before the connection to the
'silent monitor service is considered disconnected
m_Args.AddItem("SMSRetries", 3)
‘Extension number of the IP Phone to monitor
4-79
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Enabling Silent Monitor in your Application
m_Args.AddItem("MonitoringDeviceID", 1234)
‘Set the working mode to monitored
m_silentMonitor.StartSMMonitoredMode(args)

Initiating and Ending a Silent Monitor Session
Initiating a silent monitor session starts with the client, in monitoring mode,
calling the StartSilentMonitorRequest method. This indicates that the CTI OS
server should send an OnSilentMonitorStartRequestedEvent to a remote client in
monitored mode. The remote client, upon receiving the
OnSilentMonitorStartRequestedEvent, chooses whether or not accept the request.
The remote client acknowledges its approval or rejection by sending a status
report back to the monitoring client. The monitoring client will receive the
acceptance or rejection via the OnSilentMonitorStatusReportEvent. When the
session is accepted by the remote client it, will immediately start forwarding voice
to the monitoring client. The silent monitoring session can only be terminated by
the monitoring client by calling the StopSilentMonitorRequest method, CTI OS
server will issue the OnSilentMonitorStopRequestedEvent to the remote client.
The monitored client will stop sending audio immediately when
OnSilentMonitorStopRequestedEvent is received by its SilentMonitorManager
object.

Following are code samples for initiating and ending a silent monitor session:

Monitoring Client Code Sample

Private Sub btnStartSM_OnClick()
Dim m_Args As New Arguments

‘Assemble arguments for start request
‘Agent to monitor
m_Args.AddItem "AgentID", “23840”
m_Args.AddItem "PeripheralID", “5000”

‘Request silent monitor session to start
m_SMManager.StartSilentMonitorRequest(m_Args, m_nSMSessionKey)
End Sub

Private Sub m_session_OnSilentMonitorStatusReportEvent(By Val
pIArguments As CTIOSCLIENTLib.IArguments)
 Dim strAgent As String
 Dim nMode As Integer
4-80
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Enabling Silent Monitor in your Application
 nMode pIArguments.GetValueInt(“StatusCode)

If nMode = eSMStatusMonitorStarted Then strAgent =
pIArguments.GetValueString(“MonitoredUniqueObjectID”)
 MsgBox “Silent Monitor Status”,,
“Started Monitoring Agent: ” & strAgent
 Else
 MsgBox “Silent Monitor Status”,,
“Request Failed with code = ” & nMode
 End If
End Sub

Private Sub tmrScreening_Timer()
‘After listening the conversation for 30 sec, drop monitoring session

‘Assemble arguments for stop request
‘Agent to monitor
m_Args.AddItem "SMSessionKey", m_nSMSessionKey

‘Request silent monitor session to stop
m_SMManager.StopSilentMonitorRequest(m_Args, m_nSMSessionKey)

End Sub

Monitored Client Code Sample

Private Sub m_session_OnSilentMonitorStartRequestedEvent(By Val
pIArguments As CTIOSCLIENTLib.IArguments)
 Dim strRequestInfo As String

 strRequestInfo = pIArguments.DumpArgs
MsgBox “Request to Start Silent Monitor Received”,, strRequestInfo
End Sub

Private Sub m_session_OnSilentMonitorStopRequestedEvent(By Val
pIArguments As CTIOSCLIENTLib.IArguments, bDoDefaultProcessing)
 Dim strRequestInfo As String

 strRequestInfo = pIArguments.DumpArgs
MsgBox “Request to Stop Silent Monitor Received”,, strRequestInfo
End Sub
4-81
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Deployment of Custom CTI OS Applications
Shutting Down Silent Monitor Manager
Shutting down the Silent monitor object requires that the monitoring client call
the StopSilentMonitorMode method when it is done monitoring an agent, and that
the monitored client call the StopSilentMonitorMode method during cleanup.
Each client must then remove the silent monitor manager from the Session object
by calling SetMonitorCurrentSilentMonitor with a NULL pointer. Finally each
client must destroy the silent monitor object using Session’s
DestroySilentMonitorManager method.

Following is a code sample for initiating and ending a silent monitor session:

‘Stop Silent Monitor ModeRequest
m_SMManager.StopSilentMonitorMode
‘Remove silent monitor manager object from session
errorcode = m_session_SetCurrentSilentMonitor(Nothing)
‘Destroy silent monitor manager object
errorcode = m_session.DestroySilentMonitorManager()

Deployment of Custom CTI OS Applications
This section discusses the deployment of CTI OS applications in the various
programming languages and interfaces.

Deploying Applications Using the ActiveX Controls
ActiveX controls need all the components for COM deployment plus the
components listed in Table 4-2.

Table 4-2 ActiveX Control DLLs

DLL Description

Agentselectctl AgentSelect ActiveX control

agentstatectl.dll Agentstate ActiveX control

AlternateCtl.dll Alternate ActiveX control

answerctl.dll Answer/Release ActiveX control

arguments.dll Arguments COM class
4-82
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Deployment of Custom CTI OS Applications
ActiveX controls need to be copied and registered using the regsvr32 Windows
utility. Some ActiveX controls are dependent on others. For example, all Button
type controls (e.g. AgentStatectl.dll) depend on (buttoncontrol.dll) and all Grid

badlinectl.dll Badline ActiveX control

buttoncontrol.dll Basic Button ActiveX control

ccnsmt.dll Cisco EVVBU Media Termination ActiveX
control

chatctl.dll Chat ActiveX control

conferencectl.dll Conference ActiveX control

cticommondlgs.dll Common Dialogs utility COM object

CTIOSAgentStatistics.dll AgentStatistics ActiveX control

ctioscallappearance.dll CallAppearance ActiveX control

ctiosclient.dll COM cil interfaces

ctiossessionresolver.dll COM sessionresolver

CTIOSSkillGroupStatistics.dll SkillgroupStatistics ActiveX control

ctiosstatusbar.dll StatusBar ActiveX control

EmergencyAssistCtl.dll EmergencyAssist ActiveX control

gridcontrol.dll GridControl ActiveX control

holdctl.dll Hold/Retrieve ActiveX control

IntlResourceLoader.dll Internationalization COM object

makecallctl.dll MakeCall ActiveX control

ReconnectCtl.dll Reconnect ActiveX control

recordctl.dll Record ActiveX control

SilentMonitorCtl.dll Standalone Silent Monitor ActiveX control

SubclassForm.dll COM utility control

SupervisorOnlyCtl.dll Supervisor ActiveX control

transferctl.dll Transfer ActiveX control

Table 4-2 ActiveX Control DLLs (continued)

DLL Description
4-83
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Deployment of Custom CTI OS Applications
type controls (e.g. CtiosCallappearance.dll) depend on Gridcontrol.dll. The
following table below means that for a dll listed in the left column to work
properly, all dll’s listed in the right column (“dependencies”) need to be available
(copied and registered).

Table 4-3 lists the dependencies of CTI OS ActiveX controls.

Table 4-3 Dependencies of CTIOS ActiveX Controls

DLL File Dependencies

Agentselectctl ATL71.dll, ctiosclient.dll, arguments.dll,
buttoncontrol.dll, MSVCP71.dll,
MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.AgentSelectCtl.dll
Interop.AgentSelectCtl.dll

agentstatectl.dll ATL71.dll, ctiosclient.dll, arguments.dll,
buttoncontrol.dll, cticommondlgs.dll,
MSVCP71.dll, MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.AgentStateCtl.dll
Interop.AgentStateCtl.dll

AlternateCtl.dll ATL71.dll, ctiosclient.dll, arguments.dll,
buttoncontrol.dll, MSVCP71.dll,
MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.AlternateCtl.dll
Interop.AlternateCtl.dll
4-84
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Deployment of Custom CTI OS Applications
answerctl.dll ATL71.dll, ctiosclient.dll, arguments.dll,
buttoncontrol.dll, MSVCP71.dll,
MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.AnswerCtl.dll
Interop.AnswerCtl.dll

arguments.dll ATL71.dll, MSVCP71.dll, MSVCR71.dll,
MSVCRT.dll

Note When used in a.NET application must
include:
Cisco.CTIOSARGUMENTSLib.dll

badlinectl.dll ATL71.dll, ctiosclient.dll, arguments.dll,
buttoncontrol.dll, MSVCP71.dll,
MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.BadLineCtl.dll
Interop.BadLineCtl.dll

buttoncontrol.dll ATL71.dll, MSVCP71.dll, MSVCR71.dll,
MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.ButtonControl.dll
Interop.ButtonControl.dll

ccnsmt.dll Traceserver.dll, LIBG723.dll

chatctl.dll ATL71.dll, ctiosclient.dll, arguments.dll,
MSVCP71.dll, MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.ChatCtl.dll
Interop.ChatCtl.dll

Table 4-3 Dependencies of CTIOS ActiveX Controls (continued)

DLL File Dependencies
4-85
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Deployment of Custom CTI OS Applications
conferencectl.dll ATL71.dll, ctiosclient.dll, arguments.dll,
buttoncontrol.dll, cticommondlgs.dll,
MSVCP71.dll, MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.ConferenceCtl.dll
Interop.ConferenceCtl.dll

cticommondlgs.dll ATL71.Dll, ctiosclient.dll, arguments.dll,
MSVCP71.dll, MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
Cisco.CTICOMMONDLGSLib.dll

CTIOSAgentStatistics.dll ATL71.dll, ctiosclient.dll, arguments.dll,
Gridcontrol.dll, MSVCP71.dll,
MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.CTIOSAgentStatistics.dll
Interop.CTIOSAgentStatistics.dll

ctioscallappearance.dll ATL71.dll, ctiosclient.dll, arguments.dll,
buttoncontrol.dll, cticommondlgs.dll,
MSVCP71.dll, MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.CTIOSCallAppearance.dll
Interop.CTIOSCallAppearance.dll

Table 4-3 Dependencies of CTIOS ActiveX Controls (continued)

DLL File Dependencies
4-86
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Deployment of Custom CTI OS Applications
ctiosclient.dll ATL71.dll, arguments.dll, ctiosracetext.exe,
MSVCP71.dll, MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
Cisco.CTIOSCLIENTLib.dll

If the client application will use silent
monitoring in monitoring mode, ccnsmt.dll is
also a dependency.

If the client application will use silent
monitoring in monitored mode, wpcap.dll is
also a dependency.

ctiossessionresolver.dll ATL71.dll, ctiosclient.dll, arguments.dll,
MSVCP71.dll, MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
Cisco.CTIOSSESSIONRESOLVER
Lib.dll

CTIOSSkillGroupStatistics.dll ATL71.dll, ctiosclient.dll, arguments.dll,
Gridcontrol.dll, MSVCP71.dll,
MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.CTIOSSkillGroup
Statistics.dll
Interop.CTIOSSkillGroup
Statistics.dll

ctiosstatusbar.dll ATL71.dll, ctiosclient.dll, arguments.dll,
cticommondlgs.dll, MSVCP71.dll,
MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.CTIOSStatusBar.dll
Interop.CTIOSStatusBar.dll

Table 4-3 Dependencies of CTIOS ActiveX Controls (continued)

DLL File Dependencies
4-87
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Deployment of Custom CTI OS Applications
EmergencyAssistCtl.dll ATL71.dll, ctiosclient.dll, arguments.dll,
buttoncontrol.dll, MSVCP71.dll,
MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.EmergencyAssistCtl.dll
Interop.EmergencyAssistCtl.dll

gridcontrol.dll ATL71.dll, MSVCP71.dll, MSVCR71.dll,
MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.GridControl.dll
Interop.GridControl.dll

holdctl.dll ATL71.dll, ctiosclient.dll, arguments.dll,
buttoncontrol.dll, MSVCP71.dll,
MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.HoldCtl.dll
Interop.HoldCtl.dll

IntlResourceLoader.dll ATL71.dll, MSVCP71.dll, MSVCR71.dll,
MSVCRT.dll

Note When used in a.NET application must
include:
Cisco.INTLRESOURCELOADER
Lib.dll

makecallctl.dll ATL71.dll, ctiosclient.dll, arguments.dll,
buttoncontrol.dll, cticommondlgs.dll,
MSVCP71.dll, MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.MakeCallCtl.dll
Interop.MakeCallCtl.dll

Table 4-3 Dependencies of CTIOS ActiveX Controls (continued)

DLL File Dependencies
4-88
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Deployment of Custom CTI OS Applications
ReconnectCtl.dll ATL71.dll, ctiosclient.dll, arguments.dll,
buttoncontrol.dll, MSVCP71.dll,
MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.ReconnectCtl.dll
Interop.ReconnectCtl.dll

recordctl.dll ATL71.dll, ctiosclient.dll, arguments.dll,
buttoncontrol.dll, MSVCP71.dll,
MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.RecordCtl.dll
Interop.RecordCtl.dll

SilentMonitorCtl.dll ATL71.dll, ctiosclient.dll, arguments.dll,
ccnsmt.dll, MSVCP71.dll, MSVCR71.dll,
MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.SilentMonitorCtl.dll
Interop.SilentMonitorCtl.dll

SubclassForm.dll ATL71.dll, MSVCP71.dll, MSVCR71.dll,
MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.SubclassForm.dll
Interop.SubclassForm.dll

Table 4-3 Dependencies of CTIOS ActiveX Controls (continued)

DLL File Dependencies
4-89
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Deployment of Custom CTI OS Applications
Deploying Applications Using COM (But Not ActiveX Controls)
Custom applications using COM from VB or C++ or any other Com supported
development platform, need the following COM Dynamic Link Libraries.

 • CTIOSClient.dll
When used in a.NET application must include: Cisco.CTIOSCLIENTLib.dll

 • Arguments.dll
When used in a.NET application must include:
Cisco.CTIOSARGUMENTSLib.dll

 • CtiosSessionresolver.dll (only if used – see previous discussion)
When used in a.NET application must include:
Cisco.CTIOSSESSIONRESOLVERLib.dll

 • ATL71.DLL (only if not already available on target system)

 • If the client application will use silent monitoring in monitoring mode,
ccnsmt.dll is needed. If the client application will use silent monitoring in
monitored mode, wpcap.dll is also a dependency.

SupervisorOnlyCtl.dll ATL71.dll, ctiosclient.dll, arguments.dll,
buttoncontrol.dll, MSVCP71.dll,
MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.SupervisorOnlyCtl.dll
Interop.SupervisorOnlyCtl.dll

transferctl.dll ATL71.dll, ctiosclient.dll, arguments.dll,
buttoncontrol.dll, cticommondlgs.dll,
MSVCP71.dll, MSVCR71.dll, MSVCRT.dll

Note When used in a.NET application must
include:
AxInterop.TransferCtl.dll
Interop.TransferCtl.dll

Table 4-3 Dependencies of CTIOS ActiveX Controls (continued)

DLL File Dependencies
4-90
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Deployment of Custom CTI OS Applications
The Dll files need to be copied and registered on the target system. Registration
is done by using the Windows utility regsvr32.exe providing the dll name (i.e.,
regsvr32 ctiosclient.dll).

ATL71.DLL is a Microsoft Dynamic Link Library implementing the Active
Template Library used by CTI OS. It will usually be available on most Windows
client systems in a windows system directory (e.g. \winnt\syste32 on Windows
2000). Since CTI OS depends on this DLL, it needs to be copied and registered if
it is not already available at the target system.

Deploying Applications using C++ CIL
Custom C++ applications link to the static CTI OS libraries. With your custom
application, you should also distribute ctiostracetext.exe. For the tracing
component to work, you need to register it on the system where your application
will run. To register the trace tool run ctiostracetext /RegServer. Besides
ctiostracetex.exe, there is no need to ship additional components.

Deploying Applications using .NET CIL
Applications built with the .NET CIL class libraries require the following
assemblies to be distributed together with the custom application.

Both assmebly libraries are strongly signed such that they can be installed in the
Global Assembly Cache (GAC) at the application host computer. Or of prefered
by the developer they can be at the working directory of the custom client
application.

Library Description

NetCil.dll .NET CIL Class library, contains the CTIOS
object classes

NetUtil.dll .NET Util Class library, contains helper and
utility classes used in conjuction with .NET CIL
4-91
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
Custom Application and CTI OS Security
A custom application that launches SecuritySetupPackage.exe program to create
CTI OS client certificate request needs to add the InstallDir registry value under
the following registry key:

SOFTWARE\Cisco Systems\CTI Desktop\CtiOs

If the InstallDir registry value doesn't exist, then the setup program fails and
aborts the installation process, otherwise the program uses the InstallDir registry
value to create and copy the security files to the right place after it appends
Security directory to it.

For example, if the InstallDir registry value is

<drive>:\Program Files\Cisco Systems\CTIOS Client

then the security files should be under

<drive>:\Program Files\Cisco Systems\CTIOS Client\Security

Building Supervisor Applications
This section describes how to build a supervisor desktop for IPCC. The following
documentation references the source of the CTIOS Toolkit Combo Desktop when
describing how to build a supervisor desktop. This section also references a class
called CTIObject. This class is used by the CTIOS Toolkit Combo Desktop to
wrap CIL functionality.

The source code for the Combo Desktop can be found in the following directories.

 • <Install Drive>\Program Files\Cisco Systems\CTIOS Client\CTIOS
Toolkit\dotNet CIL\Samples\CTI Toolkit Combo Desktop.NET

 • <Install Drive>\Program Files\Cisco Systems\CTIOS Client\CTIOS
Toolkit\dotNet CIL\Samples\CtiOs Data Grid.NET

In the following section, string keys are used as keys to method calls. This is for
the sake of readability. A developer writing an application can use either string
or integer based keys.
4-92
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
General Flow
The general flow of a supervisor application is as follows.

1. Request the supervisor’s team(s).

2. Start monitoring the supervisor’s team.

3. Select a team member and start monitoring the selected team member’s
activity.

4. Perform supervisory actions on the currently monitored call.

These steps illustrate the layers of a supervisor application. First, the application
gets the team. Once the team is retrieved, the supervisor application can monitor
agents. This generates more events/information allowing the supervisor
application to monitor agent calls.

Monitored and Unmonitored Events
When writing a supervisor application, developers will be confronted with two
types of events: monitored events and unmonitored events.

Unmonitored events are received for agent, call, and button enablement events
associated with the supervisor. Monitored events are received to notify the
supervisor of agent, call, and button enablement events corresponding to an agent
or call that is currently monitored by the supervisor. These events carry a field
named CTIOS_ISMONITORED. This field is set to true.

For example, if a supervisor changes state to ready, the supervisor receives an
AgentStateEvent. If a supervisor is monitoring an agent and the monitored agent
changes state, the supervisor receives an OnMonitoredAgentState event. Call
events behave in a similar manner. When the supervisor puts a call on hold, the
supervisor receives an OnCallHeld event. When the supervisor is monitoring an
agent and that agent puts a call on hold, the supervisor receives an
OnMonitoredCallHeld event.

Button enablement events behave differently. When the supervisor is monitoring
agents on the supervisor’s team, the agent will receive
OnButtonEnablementChange events for the monitored agent. It is important for
the application not to apply these events to elements of the application that control
the supervisor’s or any of the supervisor’s calls state. For example if a monitored
4-93
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
agent changes state to ready, the supervisor will receive a
ButtonEnablementChange event. The supervisor should not apply this event
since the event does not apply to the supervisor’s state.

To determine if an event is monitored, check the payload of the event for the
“Monitored” field. If the field exists and is set to true, the event is a monitored
event.

Requesting and Monitoring the Supervisor’s Team(s)
This section discusses steps 1 and 2 in the flow of a supervisor application. The
methods and events listed below are used to request and monitor the team.

Methods Called:

Agent.RequestAgentList(Arguments args)
Agent.StartMonitoringAgentTeams(Arguments args)

Events Processed:

OnNewAgentTeamMember
OnMonitoredAgentStateChange
OnMonitoredAgentInfo
OnSkillInfo

The following diagram illustrates the flow of messages between the application
and CTIOS Server when the supervisor application requests its team and then
requests to monitor the team. Since logging in a supervisor is the same as logging
in an agent, this diagram picks up at the first AgentStateEvent after the agent has
logged in.
4-94
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
Figure 4-5 Message Flow between the Application and the CTI OS Server

The requests leading up to and including Agent.StartMonitoringAgent() is in
CTIObject.StartMonitoringAgent(). When writing a supervisor application, the
developer should call Agent.RequestAgentTeamList() and
Agent.StartMonitoringAllAgentTeams(). The developer should call these
methods once the supervisor has logged in. In the CTIOS Toolkit Combo
Desktop, this is done when processing the eAgentStateEvent in the
SupervisorUIManager class’ ProcessAgentStateEvent() method.
SupervisorUIManager checks to see that the current agent is a supervisor. If so
and if CTIObject.StartMonitoringTeams() has not already been called,
CTIObject.StartMonitoringTeams() is called.
CTIObject.StartMonitoringTeams() then calls Agent.RequestAgentTeamList()
and Agent.StartMonitoringAllAgentTeams().
4-95
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
If these requests are successful, the desktop will begin receiving
OnNewAgentTeamMember, OnMonitoredAgentStateChange, and
MonitoredAgentInfoEvent events. The next sections describe how to handle each
of these events.

OnNewAgentTeamMember

OnNewAgentTeamMember events should be processed as follows.

The OnNewAgentTeamMember event is received for two possible reasons. They
are as follows.

1. After the application calls Agent.RequestAgentTeamList(),
OnNewAgentTeamMember events are sent for each member of the
supervisor’s team.

2. An agent has been added or removed from the supervisor’s team.

To address point 2 above, the field “ConfigOperation” in the payload of the
OnNewAgentTeamMember event must be examined. If this flag does not exist
or exists and is set to TeamConfigFlag.CONFIG_OPERATION_ADDAGENT
(1), the agent should be added to the grid. If the flag exists and is not set to
TeamConfigFlag.CONFIG_OPERATION_ADDAGENT, the agent should be
removed from the grid.

In supervisor applications, use the value in the UniqueObjectID field of the event
to uniquely reference/track each agent in the supervisor’s team. This ID uniquely
identifies each agent cached on the CIL.

OnNewAgentTeamMember Events and Supervisors

Note Since the supervisor is considered part of the team, an
OnNewAgentTeamMember event is sent for the supervisor logged into the
application. If the developer does not want to include the supervisor in the agent
team grid, compare the current agent ID to the ID of the agent carried in the
OnNewAgentTeamMember event. If the values are equal, do not add the
supervisor to the grid.
4-96
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
If the developer does not want to add primary supervisors to the grid, retrieve the
Agent object stored in the CIL using the Session.GetObjectFromObjectID()
method. When calling Session.GetObjectFromObjectID(), set the value in the
“UniqueObjectID” (Enum_CtiOs.CTIOS_UNIQUEOBJECTID) field of the
OnNewAgentTeamMember event as the key (first parameter to this method).
This method will return an Agent object. Check the properties of the Agent object
for the field “AgentFlags” (Enum_CtiOs.CTIOS_AGENTFLAGS). If the field
exists with the TeamConfigFlag.AGENT_FLAG_PRIMARY_SUPERVISOR
(0x01) bit set, the agent is a primary supervisor and should not be added to the
grid.

It is possible for an agent to be a team’s supervisor while not being a member of
the team. Some supervisor applications, including the combo desktop, may not
want to add this type of supervisor to the agent select grid. This is tricky because
supervisors that are not part of the team will generate
OnMonitoredAgentStateChange events. The agent select grid normally updates
when the OnMonitoredAgentStateChangeevent is received. In order to prevent
this, supervisors who are not members of the team that they are supervising will
need to be marked as such. This information can be used to avoid updates when
an OnMonitoredAgentStateChange event is received for a supervisor that is not
part of the team. In order to accomplish this, the application leverages the
following.

1. OnNewAgentTeamMember events will not be received for supervisors that
are not part of the team.

2. The CIL keeps a cache of all the agents and supervisors that it knows about.
Agents in this cache have properties that can be modified by applications built
on top of the CIL.

Knowing this, the application will mark every agent that is included in a
OnNewAgentTeamMember event as a member of this supervisor's team. When
OnMonitoredAgentStateChange events are received, the agent select grid will
only update when the agent that is represented by the event is marked as a member
of the team. In short, any agent that does not send a OnNewAgentTeamMember
event to the CIL will not be displayed in the agent select grid. This is illustrated
in the SupervisorUIManager.ProcessMonitoredAgentStateChange() method.
4-97
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
OnMonitoredAgentStateChange Events

OnMonitoredAgentStateChange events are sent when an agent in the supervisor’s
team changes state. Supervisor applications, like the CTIOS Toolkit Combo
Desktop use this event to update structures that store the supervisor’s team (the
agent team grid). This event is processed similar to OnNewAgentTeamMember.
However, there is one subtle difference. Instead of using the Arguments object
carried with the event, the application should use the arguments associated with
the agent object cached by the CIL. This is done to correctly handle skill group
membership changes related to dynamic reskilling. The CIL contains logic that
processes the OnMonitoredAgentStateChange and determines whether or not an
agent has been added or removed from a skill group. The changes in the agent’s
skill group membership are reflected in the agent object’s properties.

OnMonitoredAgentInfo Event

This event can be used to populate the following agent information.

 • AgentID

 • AgentFirstName

 • AgentLastName

 • LoginName

Time in State

If your application needs to track an agent’s time in state, it can be done as
follows. The algorithm is contained in AgentSelectGridHelper.cs. The first part
of the algorithm resides in the AgentData.UpdateData() method. This method
decides if the agent’s state duration is known or unknown. An agent’s state
duration is unknown if the agent has just been added to the grid or if the agent’s
state has not changed since being added to the grid. If a state change is detected
after the agent has been added to the grid, the time of the state change is marked.

Second, there is a timer callback that the AgentSelectGridHelper class starts when
the grid is initialized. The timer callback fires every ten seconds. When the
callback fires, the method AgentSelectGridHelper.m_durationTimer_Tick()
cycles through all of the rows in the grid. Each row who’s Time in State column
is not unknown, has its value set to the time the agent changed state minus the
current time.
4-98
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
OnSkillInfo Event

OnSkillInfo events are sent to the CIL when skillgroup statistics are enabled using
the Agent.EnableSkillGroupStatistics() method. These events are used to
populate the fields in the Skill Name column of the team grid. OnSkillInfo events
carry the ID of a skill group and its corresponding name. The
AgentSelectGridHelper processes this event by storing a mapping of skill group
IDs to skill group names. After the map is updated, each field in the Skill Name
column is updated to reflect the new skill name.

Populating an Agent Grid

If your application would like to display agent team information in a grid similar
to the one used by the CTIOS Toolkit Combo Desktop, the following table
illustrates which events supply information for each column. Please refer to
CtiOsDataGrid.AgentSelectGridHelper as an example of handling the
OnNewAgentTeamMember event.

Column Event Field

Name OnNewAgentTeamMember

OnMonitoredAgentStateChange

OnMonitoredAgentInfoEvent

Enum_CtiOs.CTIOS_AGENTFIRST
NAME

Enum_CtiOs.CTIOS_AGENTLAST
NAME

Login
Name

OnMonitoredAgentStateChange

OnMonitoredAgentInfoEvent

Enum_CtiOs.CTIOS_LOGINNAME

Agent
ID

OnNewAgentTeamMember

OnMonitoredAgentStateChange

OnMonitoredAgentInfoEvent

Enum_CtiOs.CTIOS_AGENTID

Agent
State

OnNewAgentTeamMember

OnMonitoredAgentStateChange

Enum_CtiOs.CTIOS_STATE

Time in
State

OnMonitoredAgentStateChange See the section Time in State,
page 4-98.

Skill
Group

OnMonitoredAgentStateChange Enum_CtiOs.CTIOS_NUMSKILL
GROUPS
4-99
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
Note The Skill Group column lists the field from the Arguments object as
CTIOS_NUMSKILLGROUPS. This field tells the developer how many skill
groups the agent belongs to. To obtain information about each of the agent’s skill
groups the developer should construct the following loop to get information about
each of the agent’s skill groups (code taken from the sample source file
CtiOsDataGrid\AgentSelectGridHelper.cs).

// Check to see if the event carries an array of skillgroups
// (OnNewAgentTeamMember)
//
int numGroups ;
if (args.GetValueInt(Enum_CtiOs.CTIOS_NUMSKILLGROUPS, out numGroups)
)
{
 CtiOsDataGrid.Trace(
 Logger.TRACE_MASK_METHOD_AVG_LOGIC,
 methodName,
 "Found skillgroup numbers") ;

 m_skillGroupNumbers.Clear() ;

 for (int j = 1 ; j <= numGroups ; j++)
 {
 CtiOsDataGrid.Trace(
 Logger.TRACE_MASK_METHOD_AVG_LOGIC,
 methodName,
 string.Format("Looking for skillgroup at position {0}",
j)) ;

 string unknownStr = string.Format(
 AgentSelectGridHelper.STRING_UNKNOWN_SG_FORMAT, j) ;

 // Keys for individual skillgroups are formatted as
SkillGroup[{index}]
 //

Skill
Name

OnSkillInfoEvent See the section OnSkillInfo Event,
page 4-99.

Availab
le for
Call

OnNewAgentTeamMember Enum_CtiOs.CTIOS_AGENT
AVAILABILITYSTATUS

Column Event Field
4-100
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
 string sgKey = string.Format(
 AgentSelectGridHelper.STRING_SKILLGROUP_FORMAT, j) ;

 // Each element of the array is an argument containing
 // skillgroup information.
 //
 Arguments sgInfo ;
 if (!args.GetValueArray(sgKey, out sgInfo))
 {
 CtiOsDataGrid.Trace(
 Logger.TRACE_MASK_WARNING,
 methodName,
 string.Format("No skillgroup info at position {0}",
j)) ;

 m_skillGroupNumbers.Add(unknownStr) ;
 }
 else
 {
 string sgStr ;
 if (sgInfo.GetValueString(
 Enum_CtiOs.CTIOS_SKILLGROUPNUMBER,
 out sgStr))
 {
 CtiOsDataGrid.Trace(
 Logger.TRACE_MASK_METHOD_AVG_LOGIC,
 methodName,
 string.Format(
 "Found skillgroup number {0} at poisition
{1}", sgStr, j)) ;

 m_skillGroupNumbers.Add(sgStr) ;
 }
 else
 {
 CtiOsDataGrid.Trace(
 Logger.TRACE_MASK_WARNING,
 methodName,
 string.Format("No skillgroup number at poisition
{0}", j)) ;

 m_skillGroupNumbers.Add(unknownStr) ;
 }
 }
 }
}

4-101
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
Monitoring Agents
This section discusses step 3 in the flow of a supervisor application. The methods
and events listed below are used to monitor an agent.

Methods Called:

Agent.StartMonitoringAgent(Arguments args)

Events Processed:

OnSupervisorButtonChange
OnStopMonitoringAgent
OnMonitoredAgentStateChange
OnMonitoredCallBegin

OnMonitoredCallCleared
OnMonitoredCallConferenced
OnMonitoredCallConnectionCleared
OnMonitoredCallDataUpdate
OnMonitoredCallDelivered
OnMonitoredCallDequeued
OnMonitoredCallDiverted
OnMonitoredCallEstablished
OnMonitoredCallFailed
OnMonitoredCallHeld
OnMonitoredCallOriginated
OnMonitoredCallQueued
OnMonitoredCallReachedNetwork
OnMonitoredCallRetrieved
OnMonitoredCallServiceInitiated
OnMonitoredCallTransferred
OnMonitoredCallTranslationRoute
OnMonitoredCallEnd

Once a supervisor application has been informed of an agent team member via the
OnNewAgentTeamMember event, the supervisor can monitor the agent via the
Agent.StartMonitoringAgent() method. The following sequence diagram
illustrates the call to StartMonitoringAgent() and the events sent upon successful
completion of the call.
4-102
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
Figure 4-6 Sequence Diagram for StartMonitoringAgent() and successful Call

Completion.

The requests leading up to and including Agent.StartMonitoringAgent() is in the
CTIObject.StartMonitoringAgent() method. When calling the
Agent.StopMonitoringAgent(), the agent object associated with the supervisor
(the current agent) is the target of the method. The parameter is an Arguments
object set as follows.

When calling Agent.StartMonitoringAgent(), the agent object associated with the
supervisor (the current agent) is the target of the method. The parameter is an
Arguments object set as follows.

Key Value

AgentReference The UniqueObjectID of the currently
monitored agent.
4-103
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
OnSupervisorButtonChange

This event is delivered to define the operations that may be executed successfully
by the supervisor. The operations included in this event are as follows.

 • Logout an agent on the team

 • Make an agent on the team ready

 • Enable silent monitor

 • Enable barge-in on agent

 • Enable intercept call

The application uses the bitmask carried by this event, to enable or disable the
functionality listed above. The ProcessSupervisorButtonChange() method in
SupervisorUIManager illustrates how to process this event.

Monitored Call Events

Note that the majority of events listed with StartMonitoringAgent() are monitored
call events. These events inform the supervisor of monitored agent’s calls
beginning, ending, and changing. The combo desktop uses these events to
populate its monitored calls grid.

Making Agents Ready and Logging Agents Out

When StartMonitoringAgent() is called for a given agent, the supervisor
application will begin receiving SupervisorButtonChange events. This event may
indicate that the monitored agent is in a state where the supervisor can make the
agent ready or log the agent out. The following paragraphs describe how a
supervisor application can make an agent on the supervisor’s team ready or log
the agent out.

Key Value

AgentReference The UniqueObjectID of the agent to
begin monitoring.
4-104
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
To make an agent ready, the desktop calls the method Agent.SetAgentState().
When calling this method, the agent object representing the monitored agent is
used as the target of the method. The parameter is an Arguments object populated
with the following key/value pairs.

To logout an agent, the desktop calls the method Agent.SetAgentState(). When
calling this method, the agent object representing the monitored agent is used as
the target of the method. The parameter is an Arguments object populated with
the following key/value pairs.

An agent involved in a call will not be logged out until the agent is disconnected
from the call. Both the out-of-the-box desktop and the combo desktop warn the
supervisor of this behavior. This can be done by checking the state of the

Key Value

SupervisorID The ID of the supervisor who is making the agent
ready. This value is the value of the AgentID key
associated with the current agent (the current agent
is the agent passed into the call to
Session.SetAgent() when first logging in the agent).

AgentState The state to which to set the agent. In this case, the
state is ready (integer with value 3).

Key Value

SupervisorID The ID of the supervisor who is
making the agent ready. This value is
the value of the AgentID key
associated with the current agent (the
current agent is the agent passed into
the call to Session.SetAgent() when
first logging in the agent).

AgentState The state to which to set the agent. In
this case, the state is ready (integer
with value 3).

EventReasonCode The value associated with this key is
999. The value 999 indicates to the rest
of IPCC that the agent was logged out
by their supervisor.
4-105
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
currently monitored agent. If the agent’s state is talking, hold, or reserved the
monitored agent is involved in one or more calls and will not be logged out until
the agent has been disconnected from all calls. This is illustrated in
SupervisorUIManager.m_btnMonLogoutAgentClick().

Successfully calling Agent.SetAgentState() should be followed by one or more
SupervisorButtonChange and MonitoredAgentEvents reflecting the change in the
monitored agent’s state.

Monitoring Calls
This section discusses step 4 in the flow of a supervisor application. The methods
and events listed below are used to monitor a call.

Methods Called

Agent.StartMonitoringCall()
Agent.SuperviseCall()

Events Processed

Events Processed
OnSupervisorButtonChange
AgentStateEvents
CallEvents
MonitoredCallEvents

MonitoredCallEvents

As stated in the “Monitoring Agents” section, calling
Agent.StartMonitoringAgent() will trigger MonitoredCallEvents for the agent
specified in Agent.StartMonitoringAgent(). The MonitoredCallEvents received
by the supervisor desktop, inform the desktop of the state of the monitored agent’s
calls. The combo desktop uses these events to populate and update the monitored
calls grid. Please see the SupervisorUIManager and CallAppearanceHelper
classes for further details.

To monitor a given call, the supervisor calls the Agent.StartMonitoringCall()
method. The target of the call is the current agent (Agent object representing the
supervisor). StartMonitoringCall() takes an Arguments object with the
CallReference key set to the UniqueObjectID of the call to be monitored. This is
illustrated in the CTIObject.StartMonitoringCall()method.
4-106
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
Barging into Calls

The following sequence diagram illustrates a request to barge into an agent’s call.
In this sequence diagram, the supervisor application is divided into four
components to illustrate the different events that affect the different pieces of a
supervisor application.

Figure 4-7 Sequence Diagram for Barging into an Agent’s Call

Once Agent.StartMonitoringCall() is called for a specific call, the application will
begin receiving SupervisorButtonChange events. When a call is being monitored,
the SupervisorButtonChange event may carry a bitmask indicating that the call
can be barged into. To barge-in on a call, the application calls the
Agent.SuperviseCall() method. The target of the SuperviseCall() method is the
current agent (the agent object that represents the supervisor). The parameter to
the method is an Arguments object with the following key/value pairs.
4-107
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
Upon successfully calling this method, the application will receive many events
since this method not only changes the state of the monitored call, but also
delivers a call to the supervisor which changes the supervisor’s state. When a
OnButtonEnablementChange event is received, be sure to check the monitored
flag. If the flag does not exist or exists and is set to false, apply the event to any
application specific logic or UI to control the supervisor’s state. This is illustrated
in SoftphoneForm.OnEvent(). Notice that this method discards any event that is
monitored.

One or more OnSupervisorButtonChange events will be received by the
application. These events notify the application that it is now possible to intercept
the agent’s call.

The trickiest piece of handling the events that result from a successful call to
Agent.SuperviseCall() is handing the resulting Call and MonitoredCall events.
All CallEvents should be applied to whatever application specific object and/or
UI element is managing calls directly connected to the supervisor’s device
(SoftphoneForm in the combo desktop). All MonitoredCallEvents should be
applied to whatever application specific object and/or UI element is managing
calls connected to the supervisor’s team members/monitored agents
(SupervisorUIManager in the combo desktop).

Calling SuperviseCall() with the SupervisoryAction set to barge-in, essentially
initiates a consultative conference between the caller, agent, and supervisor. This
means that whatever UI elements and/or objects that handle monitored calls has
to be able to handle the set of events that setup a consultative conference. In
general, this is not too difficult. The consultative call is joined to the conference
call by sending a MonitoredCallEndEvent to end the consultative call. Then a
MonitoredCallDataUpdateEvent is used to change the ID of the call to the
conference. The MonitoredCallEndEvent will take care of cleaning up the
consultative call. The trick is to check OnMonitoredCallDataUpdateEvents for

Key Value

AgentReference The UniqueObjectID of the currently
monitored agent

CallReference The UniqueObjectID of the currently
monitored call

SupervisoryAction The value 3. For the .NET CIL, this is
SupervisoryAction.eSupervisorBargeIn
4-108
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Building Supervisor Applications
the OldUniqueObjectID key. If this key exists, it means that the UniqueObjectID
of a call has changed. OldUniqueObjectID stores the old/obsolete ID of the call.
UniqueObjectID stores the new ID of the call. This new ID will be carried in all
future events for the call. Application logic must be updated based on this
information or new events for the call will not be tracked correctly.

Intercepting Calls

Once a supervisor has barged into an agent’s call, the supervisor can intercept the
call. This can be done by calling the Agent.SuperviseCall() method. The target
of the SuperviseCall() method is the current agent (the agent object that represents
the supervisor). The parameter to the method is an Arguments object with the
following key/value pairs.

Calling this method will remove the agent from the call. This means that
OnMonitoredEndCall events will be received for the agent. Also,
OnSupervisorButtonChange events will be sent to reflect the current state of the
monitored agent.

Updating Monitored Call Data

Setting monitored call data is very similar to setting call data on an agent’s call.
The only difference is that the monitored call is the target of the
Call.SetCallData() method. The currently monitored call can be retrieved by
calling Agent.GetMonitoredCall() where the current agent (the agent object that
represents the supervisor) is the target of the Agent.GetMonitoredCall() method.

Key Value

AgentReference The UniqueObjectID of the currently
monitored agent

CallReference The UniqueObjectID of the currently
monitored call

SupervisoryAction The value 4. For the .NET CIL, this is
SupervisoryAction.eSupervisorIntercept
4-109
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Sample Code in the CTI OS Toolkit
Sample Code in the CTI OS Toolkit
The CTI OS Toolkit provides several samples that illustrate how to use the
various CTI OS CILs in custom applications. These samples are categorized
according to the CIL (.NET, Java, or Win32) that they use.

.NET Samples

Note Of all the samples provided in the CTI OS toolkit, the .NET sample applications
provide the most complete set of coding examples. Therefore the .NET samples
should be used as the reference implementation for custom CTI OS application
development regardless of which language you plan to use in your custom
development.

The Java and Win32 samples should be used asa secondary references to highlight
syntactic differences as well as minor implementation differences between the
CILs.

CTI Toolkit Combo Desktop.NET

The CTI Toolkit Combo Desktop.NET sample illustrates how to use the .NET
CIL to build a fully functional agent or supervisor desktop. Though this sample is
written in C#, it is a good reference in general, for how to make CIL requests and
handle CIL events in an agent mode CIL application. This sample illustrates the
following CIL programming concepts:

 • Agent mode connection to CTI OS

 • Agent desktop functionality (call control, agent state control, statistics)

 • Supervisor desktop functionality (team state monitoring, barge-in, intercept)

 • Outbound option functionality

 • Button enablement

 • Failover
4-110
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Sample Code in the CTI OS Toolkit
Configuring the CTI Toolkit Combo Desktop

The .NET CTI Combo desktop is configured via an XML file found in the current
working directory of the desktop.

The name of the file used to configure the CTI Toolkit Combo Desktop is
“CTIOSSoftphoneCSharp.exe.config”. The desktop attempts to find the file in
the current directory. If the file is not found, the desktop creates the file and
displays the following error message.

The user should now be able to edit the file to fill in the appropriate values.

Following is an example configuration file.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <appSettings>
 <add key="LogFilePath" value=".\CtiOsClientLog" />
 <add key="CtiOsA" value="CtiOsServerA" />
 <add key="CtiOsB" value="CtiOsServerB" />
 <add key="PortA" value="42028" />
 <add key="PortB" value="42028" />
 </appSettings>
 <configSections>
 <section name="JoeUser"
type="System.Configuration.SingleTagSectionHandler" />
 </configSections>
 <JoeUser TraceMask="0xf" AgentID="1003" AgentInstrument="3009"
PeripheralID="5000" DialedNumbers="3011,3010" />
</configuration>

The configuration file is composed of the following elements. These elements are
as follows.

configuration – This elements contains the configuration for the desktop.

appSettings – This section defines configuration settings that are shared by every
Windows user that logs into the system. A system administrator needs to
configure these values for the appropriate CTIOS Server(s) and port(s). Each of
this element’s sub-elements defines key value pairs used to configure the desktop.
4-111
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Sample Code in the CTI OS Toolkit
LogFilePath – The value for this key is the path to the log file as well as the
prefix of the name of the log file. The name of the Windows user, the log
file’s creation time, and the extension “.log” will be appended to form the
complete name of the log file. For example, if the desktop was run at 11:58
AM on May 23, 2005, the log file would have the name
CtiOsClientLog.JoeUser.050523.11.58.04.5032.log.

CtiOsA – The name or IP address of one of the CTIOS Server peers.

CtiOsB – The name or IP address of the other CTIOS Server peer.

PortA – The port used to connect to the CTIOS Server specified by the
CtiOsA key.

PortB – The port used to connect to the CTIOS Server specified by the
CtiOsB key.

configSections – This section is used to define Windows user specific sections of
the configuration file. These sections are defined using the section element. You
will notice in the sample configuration file that there is a section element under
configSections corresponding to the element tagged with the Window’s user
name “JoeUser” under the configuration element. This section should not need to
be manually modified. As different Windows users use the desktop, this section
will be modified to include section elements for each of the users.

The rest of the configuration file is composed of elements that define
configuration specific to different Windows users. For each section element in
the configSections element, there is a corresponding element under the
configuration element. These elements are used to store information specific to
given users such as trace mask, agent login ID, dialed numbers, etc. Most of the
attributes in this element should not need to be modified. The one attribute that
may need modification is the TraceMask attribute. This attribute is used to
control the amount of information logged to the log file.

CtiOs Data Grid.NET

This sample is a set of helper classes that are used in other .NET CIL samples.
4-112
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Sample Code in the CTI OS Toolkit
All Agents Sample.NET

This sample illustrates how to use the .NET CIL to build a monitor mode
application that monitors agents. Though this sample is written in C#, it is a good
reference in general for how to create a monitor mode CIL application. This
sample illustrates the following CIL programming concepts:

 • Monitor mode connection to CTI OS

 • When to enable connect and disconnect buttons for a monitor mode
application

 • How to handle failover in monitor mode.

 • Filtering for agent events

All Calls Sample.NET

This sample illustrates how to use the .NET CIL to build a monitor mode
application that monitors calls. This sample illustrates the following CIL
programming concepts:

 • Monitor mode connection to CTI OS

 • Connect and Disconnect error handling

 • Filtering for call events

Java CIL Samples
AllAgents - This sample illustrates how to use the Java CIL to build a monitor
mode application that monitors calls.

JavaPhone - This sample illustrates how to use the Java CIL to create a
rudimentary agent mode application.

Win32 Samples
CTI Toolkit AgentDesktop - This sample illustrates how to use the Win32 COM
CIL's ActiveX controls to create an agent desktop using VisualBasic .NET.
4-113
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 4 Building Your Application
Sample Code in the CTI OS Toolkit
CTI Toolkit IPCC SupervisorDesktop - This sample illustrates how to use the
Win32 COM CIL's ActiveX controls to create a supervisor desktop using
VisualBasic .NET.

CTI Toolkit Outbound Desktop - This sample illustrates how to use the Win32
COM CIL's ActiveX controls to create an outbound option desktop using
VisualBasic .NET.

CTI Toolkit C++Phone - This sample illustrates how to use the C++ CIL to
create a rudimentary agent mode application.
4-114
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Ente

C H A P T E R 5

CTI OS ActiveX Controls

The CTI OS Developer's Toolkit includes a set of ActiveX controls to enable
rapid application development. ActiveX controls are typically UI components
(there are also ActiveX controls which are invisible at run time) that enable easy
drag-and-drop creation of custom CTI applications in a variety of container
applications. Container applications include: Microsoft Visual Basic 6.0,
Microsoft Internet Explorer, Microsoft Visual C++ 7.1(1), Borland Delphi,
Sybase Powerbuilder and other applications supporting the OC96 ActiveX
standard.

The CTI OS Agent Desktop and CTI OS Supervisor Desktop for IPCC Enterprise
applications are both Visual Basic applications based on the CTI OS ActiveX
controls.

See also the CTI OS Agent Desktop User Guide for Cisco ICM/IPCC Enterprise
& Hosted Editions as well as the CTI OS Supervisor Desktop User Guide for
Cisco IPCC Enterprise Edition for further reference on features of the CTI OS
ActiveX controls.

Table 5-1 lists the ActiveX controls included with CTI OS. As seen in the table,
CTI OS Controls can be grouped into Agent Related Controls, Call Related
Buttons, Statistics Controls, and Supervisor Controls.
5-1
rprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
Table 5-1 CTI OS ActiveX Controls

Control Description

Agent Related Controls

AgentStateCtl Provides UI to for login, logout, ready, not ready and
wrapup requests, also enables the use to specify
reason codes for logout and Not_Ready (if supported
and configured).

ChatCtl Provides UI to send text messages to a supervisor or
(if allowed) to other agents.

EmergencyAssistCtl Provides UI to place Emergency and Supervisor
Assist calls. These calls allow agents to
conveniently contact a supervisor if they need help.
The corresponding ICM scripts must be configured
in order for this control to work.

Call Related Controls

AlternateCtl Provides UI for alternate requests. If an agent has
Call A active and Call B on hold, alternate will put
call A on hold and make Call B active. Useful during
consult calls.

AnswerCtl Provides UI to answer a call. Only a call with state
“LCS_Alerting” (Ringing) can be answered.

BadLineCtl Provides a UI to report a Bad Line, e.g. bad voice
quality or equipment problems.

CallAppearanceCtl A grid control displaying call information, including
call status and context data,

ConferenceCtl Provides UI to place a conference call in single step
or consultative mode.

HoldCtl Provides UI to put calls on hold and retrieve them.

MakeCallCtl Provides UI to enter a telephone number and place a
make call request.

ReconnectCtl Provides a UI for reconnect requests. If an agent has
Call A active and Call B on hold, reconnect will
hang up call A and make Call B active. Useful
during consult calls to return to the original call.
5-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
StatusBarCtl Visually displays information about the logged on
agent (id, instrument, extension, current state).

RecordCtl Provides UI for Call Recording requests (start/stop
recording), the requests will be forwarded to CTI
Server, so they can be handled by a configured call
recording service.

TransferCtl Provides UI to transfer a call in single step or
consultative mode.

Statistics Controls

AgentStatisticsCtl A grid control displaying real-time agent statistics.
Columns are configurable at CTI OS server (see the
CTI OS System Manager's Guide for Cisco
ICM/IPCC Enterprise & Hosted Editions).

SkillgroupStatisticsCtl A grid control displaying real time skill group
statistics. Columns are configurable at CTI OS
server (see the CTI OS System Manager's Guide for
Cisco ICM/IPCC Enterprise & Hosted Editions).

Supervisor Controls

AgentSelectCtl Supervisor specific; displays all agent team
members of a supervisor (configured by ICM),
including agent name, agentid, agentstate,
timeinstate and skillgroups.

SupervisorOnlyCtl Provides UI for Supervisor functions including
Barge-In, Intercept, logout monitored agent and
make monitored agent ready.

SilentMonitorCtl.dll Standalone control that provides the capability of
creating a monitoring application that connects to
CTI OS, but does not need to login as a supervisor.

Table 5-1 CTI OS ActiveX Controls (continued)

Control Description
5-3
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
Property Pages
Property Pages
While most settings in CTI OS are downloaded from CTI OS server to the client,
ActiveX controls additionally offer property pages. The activation of the property
pages is container dependent (e.g. in Visual Basic, you can “right-click” on an
ActiveX control and select Properties from the pop-up menu). In CTI OS the most
common properties selectable via property pages are ButtonType (e.g., The
Holdctl can be a hold or retrieve button), as well as fonts and colors.

Button Controls and Grid Controls
Most of the CTI OS ActiveX controls are either Button Type Controls or Grid
Type Control, with the following exceptions:

 • Statusbarcontrol

 • ChatCtl

 • Some of the Utility controls (CtiCommonDlgs, SubClassFormCtl).

As such they share common principles.

Button Controls
Button Controls include the AgentStateCtl, AlternateCtl, AnswerCtl, BadLineCtl,
ConferenceCtl, EmergencyAssistCtl, HoldCtl, MakeCallCtl, ReconnectCtl,
SupervisorOnlyCtl, RecordCtl, and TransferCtl. They provide an UI to perform a
certain CTI task (like logging in or answering a call). All of the Button Controls
are based on the CTI OS ButtonCtl (see Utility controls) and share the same
characteristics. All CTI OS buttons will enable and disable themselves
automatically based on the current state of the system. For example, if an agent is
not logged in, the only button available to click is the Login Button (see
AgentStateCtl), or if a call has not been answered and is selected in the
CallAppearanceCtl, the Answer Button will be enabled (see AnswerCtl and
CallAppearanceCtl). All buttons can be configured via their property pages to
show custom text captions, custom icons and custom tooltip captions.
5-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
Grid Controls
Grid controls include the AgentSelectCtl, CallAppearanceCtl, AgentStatisticsCtl
and SkillGroupStatisticsCtl. The Grid Controls are used to display data, select
calls (see CallAppearanceCtl) or Agents (AgentSelectCtl), or in some cases
enable you to enter data (e.g. Callvariables in the CallAppearanceCtl). The
following grid properties can be configured by CTI OS server (see the CTI OS
System Manager's Guide for Cisco ICM/IPCC Enterprise & Hosted Editions):

 • Columns to display

 • Column header

 • Column width

 • Column alignment

Supervisor Status Bar
The Supervisor Softphone has a status bar that appears at the bottom of the
window. The supervisor status bar information is configurable at design time
using the property pages. It can also be set programmatically at run time.

CTI OS ActiveX Control Descriptions
This section describes the CTI OS ActiveX softphone controls listed in Table 5-1.

AgentStateCtl
The agentstate control is based on the CTI OS button control and can be one of
several button types. To select the button type, bring up the property page
(container dependent, for example right click in VB) and select the desired
agentstate functionality from the following:

 • Login Button. Pressing the login button will bring up the Login dialog box
(Figure 5-1) to allow the agent to select a connection profile (see the CTI OS
System Manager's Guide for Cisco ICM/IPCC Enterprise & Hosted
Editions), agent id and instrument or other switch specific fields.
5-5
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
Figure 5-1 Login Dialog

The fields displayed can be configured. The dialog shows a login dialog
configured for IPCC. An agent logging in can select a connection profile for the
Connect To: drop down box, enter, agent id, password and instrument and click
on OK to send a Login request.

 • Logout Button. Clicking the logout button will send a request to CTI OS
server, to log out the currently logged in agent. For some switches, including
IPCC, the agent needs to be in the not ready state in order for this button to
be enabled. If Reason Codes are supported on the switch and configured on
ICM, a reason code dialog will pop up as shown in Figure 5-2.
5-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
Figure 5-2 Reason Code Dialog for Logout

This dialog lets you select a reason code to be sent along with the logout request.
Reason codes can be configured at CTI OS server

 • Ready Button. Clicking the ready button will send a request to CTI OS
server, to put the agent in ready state (ready to accept calls).

 • Not Ready Button. Clicking the not ready button will send a request to CTI
OS server, to put the agent in not ready state (ICM will not route calls to an
agent in the not ready state). If Reason Codes are supported on the switch and
configured on ICM, a reason code dialog will pop up as shown in Figure 5-3.
5-7
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
Figure 5-3 Reason Code Dialog for Not Ready

This dialog lets you select a reason code to be sent along with the not_ready
request. Reason codes can be configured at the CTI OS Server.

 • Work Ready Button. Clicking this button will send a request to CTI OS
server to put the agent in the work ready or wrapup state. The behavior of this
button depends on the wrapup mode support of the switch. On IPCC, the
behavior is controlled by the ICM AgentDeskSettings (see the IPCC
Administration Guide for Cisco IPCC Enterprise Edition).

 • Work Not Ready Button. Clicking this button will send a request to CTI OS
server to put the agent in the work not ready or wrapup state. The behavior of
this button depends on the wrapup mode support of the switch. On IPCC, the
behavior is controlled by the ICM AgentDeskSettings (see the ICM
Administration Guide for Cisco ICM Enterprise Edition).
5-8
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
AgentSelectCtl
The agent select control is used for supervising agents and becomes active if the
currently logged in agent is a supervisor. When a supervisor has logged on, this
grid based control will display all agent team members of a supervisor
(configured by ICM), including agent name, AgentID, AgentState, TimeInState
and SkillGroups. The TimeInState column will be reset in real-time as the agents
change state. If an agent remains in a state for more than 10 minutes, the
TimeInState figure will be displayed in red.

Figure 5-4 Agent Select Grid Populated with Sample Data

The agent select control handles the following events:

 • OnNewTeamMember. Informs the supervisor of a new team member or a
team member change. This will cause a row in the agentselect grid to be
updated (add/remove agent).

 • OnMonitoredAgentStateChange. Informs the supervisor of an agent state
change. The new agentstate will be displayed in the State column and the
TimeInState Column will be set to zero.

 • OnAgentInfo Event.

A supervisor can select a “currently monitored agent” by clicking on an agent
displayed in the grid. This causes a set monitored agent method call on the agent
object. Any supervisory action (for example logout monitored agent – see
SupervisorOnlyCtl) will be performed on the “currently monitored” agent.
5-9
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
AgentStatisticsCtl
The AgentStatistics control is a grid based control displaying ICM agent real time
statistics. The columns displayed are configurable at CTI OS server (see the CTI
OS System Manager's Guide for Cisco ICM/IPCC Enterprise & Hosted Editions).
Also, the update interval can be adjusted. It defaults to 10 seconds.

Figure 5-5 Agent Statistics Grid

AlternateCtl

The AlternateCtl is a Button type control allowing the agent to send an alternate
call request. Alternate is a compound action of placing an active call on hold and
then retrieving a previously held call or answering an alerting (ringing) call on the
same device. Alternate is a useful feature during a consult call.

AnswerCtl
The Answer Control is a button that provides UI for sending answer and release
call requests. The behavior (answer or release) can be set via the ButtonType set
from the property page as explained under AgentState controls.

Answer Icon:
5-10
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
Release Icon:

BadLineCtl

The Bad Line Control is a button that provides UI for reporting a Bad Line. This
request will generate a database entry in ICM and is an indicator for
voice/equipment problems.

CallAppearanceCtl
The CallAppearance Control is a grid based control displaying call information,
including call status and call context data (i.e., CallVariable1 through
CallVariable10 and ECC variables).
5-11
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
Figure 5-6 CallAppearance Control Displaying Two Calls

Each incoming or outgoing call is displayed in one row in the grid. When a call
first arrives, it will usually show a status of “Ringing”, until it is answered. A call
can be answered by double clicking the call in the grid as well clicking on the
Answer Button. Some columns in the CallAppearance grid can be edited if so
configured (for example, the Columns displaying Callvariables) by clicking on
the cell to be edited.

The grid can display multiple calls (see Figure 5-6). If the grid is displaying
multiple calls, a user can select a call by clicking anywhere on the row where the
call is displayed. This will highlight the whole row displaying this call (e.g. in
Figure 5-6 the call with id 16777886 is currently selected). Any button controls
(e.g., Answer, Release, Hold,) will enable or disable themselves based on the state
the newly selected call is in.

The CallAppearance grid handles most call related events. It will display a call as
soon as it receives an eCallBeginEvent. It will update the CallStatus and
CallContext (CallVariables and ECC variables) on eCallDataUpdate and other
call events (eServiceInitiated, eCallEstablished,). It will erase the call from the
grid when it receives an eCallEnd event.

The CallAppearance grid can be in one of two modes. In “normal” mode it will
show any calls for the agent/supervisor logged in; in “monitored” mode (only for
supervisor), the CallAppearance grid will display all calls for a currently
monitored agent (see Agent Select grid). A supervisor can then select a
“monitored call” by clicking on a row in the grid to perform supervisory functions
like barge-in or intercept (see SupervisorOnly control).
5-12
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
ChatCtl
The Chat Control provides a UI to formulate and send text messages to a
supervisor or (if allowed) other agents. The chat privileges are configurable at
CTI OS server (see the CTI OS System Manager's Guide for Cisco ICM/IPCC
Enterprise & Hosted Editions).

Figure 5-7 Chat Control

You can specify an AgentID in the field labeled Send to AgentID and then enter
a message in the Edit Outgoing Message box. Clicking the Send Button will send
the message. Incoming messages will be displayed in the Message Display.
Clicking on the Clear button allows an agent to clear the display.

The ChatCtl does not implement a button directly, but may be linked to a button
through Visual Basic, so that clicking the button will pop up the ChatCtl.

ConferenceCtl
The conference control is used to create a conference call. This can be done in
either single step or consultative mode.
5-13
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
Icon for ConferenceInit:

Icon for Conference Complete:

Depending on call status, pressing the Conference button once will bring up the
dialog shown in Figure 5-8 (see also MakeCall dialog):

Figure 5-8 The Conference Init Dialog

This dialog is similar to the Make Call dialog. It allows you to initiate a
consultative Conference (Conf Init) or to place a Single Step Conference call.
5-14
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
Enter the number you wish to dial by either typing it into the text box labeled
Number to Dial or by clicking the numbers on the displayed keypad. Once the
number is entered you can click on Conf Init to place a consultative conference
call or Single Step to initiate a single step conference. This will close this dialog.
If you choose to place a consultative call, the conference button will change to
Conference Complete. You must press this button to complete the conference
after talking to the consult agent.

The conference dialog also has a Mute Tones section that allows you to suppress
audio output of selected or all tones.

The More button brings up an additional section of the dialog displaying all
CallVariables along with any values set in the original call. The agent may change
or add values to send along with the consult call by double clicking on the
appropriate line in the Value column (see Figure 5-9).

Figure 5-9 Expanded Dialog

EmergencyAssistCtl
The EmergencyAssistCtl is a button that provides a UI to place emergency or
supervisor assist calls to a supervisor. On the ICM side this functionality is
implemented with a script (see the CTI OS System Manager's Guide for Cisco
ICM/IPCC Enterprise & Hosted Editions). The main difference between the
emergency call and supervisor assist requests is the script to be run. An agent may
click this control whether he has a call or not. If the agent has an active customer
call, clicking this button will place a consult call to the supervisor. The
“Conference Complete” as well as the “Transfer Complete” will be enabled to
5-15
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
allow the agent to either conference the supervisor into the call or to transfer the
call to the supervisor. If configured, clicking this button can also cause a single
step conference. The behavior (emergency call or supervisor assist) can be set via
the ButtonType property set from the Property Page, as described under
AgentState controls.

Emergency Icon:

Supervisor Assist Icon:

HoldCtl
The HoldCtl is a button that provides a UI for sending hold and retrieve call
requests. The behavior (hold or retrieve) can be set via the ButtonType property
set from the Property Page, as described under AgentState controls.

Hold Icon:

Retrieve Icon:
5-16
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
MakeCallCtl

The MakeCallCtl is used to place calls and to generate DTMF tones. When this
button is clicked it will bring up the dialing pad dialog box to enter data and place
a makecall request (Figure 5-10).

Figure 5-10 Dial Dialog

Enter the number you wish to dial by either typing it into the textbox labeled
Number to Dial or by clicking the numbers on the displayed keypad. Once the
number is entered you can click on Make Call to send the MakeCall request.

This dialog also has a Mute Tones section that allows you to suppress audio
output of selected or all tones.
5-17
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
You may enter values for CallVariable1 through CallVariable10 and ECC Call
Variables via the Dial Dialog. Clicking the More button on the dialog extends it
to display a grid listing all possible Call Variables. A value may be entered for
each of these variables by double clicking on the appropriate line in the Value
column (see Figure 5-11).

Figure 5-11 Expanded Dialog

If the agent is on a call while pressing the Make Call button, the dialpad will be
displayed without the MakeCall feature. The agent can then use the dialpad to
play DTMF tones.

ReconnectCtl

The ReconnectCtl is a Button control allowing the agent to send a Reconnect Call
request. Reconnect is a useful feature during a consult call. If an agent has Call A
held and Call B active, reconnect will hang up Call B and make Call A active. In
a consult call scenario, reconnect will hang up the consult call and return to the
original call.
5-18
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
SkillgroupStatisticsCtl
The SkillGroupStatistics control is a grid based control displaying ICM real time
SkillGroup statistics.

The columns displayed are configurable at CTI OS server (see the CTI OS System
Manager's Guide for Cisco ICM/IPCC Enterprise & Hosted Editions). The
update interval can be configured but defaults to 10 seconds.

If an agent belongs to multiple SkillGroups, each row will display statistics for
one SkillGroup. For a supervisor this control will display all skillgroups in his
team.

Figure 5-12 SkillgroupStatisticsCtl Displaying Sample Data for Three

Skillgroups

StatusBarCtl
The CTI OS statusbar control displays information about the logged on agent as
well as CTI OS specific details (Figure 5-13).

Figure 5-13 StatusBar Control Displaying Sample Data

The statusbar is separated into several panes. The panes are defined as follows:

 • Pane 1: displays current extension and instrument

 • Pane 2: displays Agent ID

 • Pane 3: Message Waiting Indicator. If media termination is used and
Voicemail is active, this pane will display “Voicemail” to indicate Voicemail
was left.
5-19
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
 • Pane 4: displays Agent State

 • Pane 5: displays the CTI OS server currently connected to

 • Pane 6: displays overall status (online, offline)

SupervisorOnlyCtl
The SupervisorOnly Control provides buttons for Supervisor functions including
Barge-In, Intercept, Logout Monitored Agent and make Monitored Agent Ready.
The behavior of the button can be set in the General tab of the Property Page.

Logout Monitored Agent: Logs out the currently monitored agent (set for
example via the AgentselectCtl). If the currently monitored agent has a call
active, the request will be queued and the agent will be logged out as soon as the
call ends

Set Monitored Agent Ready: Forces the currently monitored agent from the “not
ready” state into the ready state:

Barge-In: Lets the supervisor participate in the currently monitored call. The
currently monitored call is selected via the CallAppearanceCtl (in monitor mode).
Barge-in is really a conference on behalf of the monitored agent
5-20
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
Intercept: Intercept can only be applied on a previously barged in call. The
monitored agent will be dropped out of the call and the supervisor is left with the
customer in a call.

Together with the AgentSelectCtl and the CallAppearanceCtl (in monitor mode)
the SupervisorOnlyCtl is used in the CTI OS Supervisor Desktop application to
build the Agent Real Time Status window, as shown in Figure 5-14.

Figure 5-14 Supervisor Softphone Agent-RealTime Status Window

This window shows the AgentSelectCtl and the CallappearanceCtl in monitor
mode on the right side and four instances of the SupervisorOnlyCtl on the left
side. From top to bottom they are: “Make Monitored Agent Ready” (disabled,
since Agent 5101 is talking), “Logout monitored Agent”], Barge-in and Intercept.

Start Silent Monitor: Initiates a silent monitor session with the currently
monitored agent
5-21
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
Stop Silent Monitor: Terminates the currently ongoing silent monitored session

RecordCtl
The RecordCtl is a button that provides UI for Call Recording requests (start/stop
recording), the requests will be forwarded to CTI Server, so they can be handled
by a configured call recording service. To record a call a current call has to be
selected (e.g. via the CallAppearanceCtl). Once the record button is clicked, it
will turn into record stop button.

Icon for Record Start:

Icon for Record Stop:

TransferCtl
The TransferCtl is a button that provides UI to transfer a call in single step or
consultative mode. The mechanism is the same as explained for the conference
control.
5-22
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
CTI OS ActiveX Control Descriptions
Icon for TransferInit:

Icon for Transfer Complete:

Depending on call status, pressing the Transfer button once will bring up the
dialog shown in Figure 5-15 (see also MakeCall dialog):

Figure 5-15 Dial Dialog

This dialog is similar to the Make Call dialog. It allows you to initiate a
consultative Transfer (Transfer Init) or to place a Single Step Transfer call.
5-23
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
The Silent Monitor StandAlone ActiveX Control
Enter the number you wish to dial by either typing it into the text box labeled
Number to Dial or by clicking the numbers on the displayed keypad. Once the
number is entered you can click on Conf Init to place a consultative transfer call
or Single Step to initiate a single step transfer. This will close this dialog. If you
choose to place a consultative call, the transfer button will change to Transfer
Complete. You must press this button to complete the transfer after talking to the
consult agent.

The transfer dialog also has a Mute Tones section that allows you to suppress
audio output of selected or all tones.

The More button brings up an additional section of the dialog displaying all
CallVariables along with any values set in the original call. The agent may change
or add values to send along with the consult call by double clicking on the
appropriate line in the Value column (see Figure 5-9).

Figure 5-16 Expanded Dialog

The Silent Monitor StandAlone ActiveX Control
The Silent Monitor StandAlone ActiveX Control provides an interface for easy
integration with the CTI OS Silent Monitor functionality. The ComObject can be
used in Visual Basic 6.0 as well as other host containers. This section
demonstrates the use of this control in Visual Basic 6.0.
5-24
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
The Silent Monitor StandAlone ActiveX Control
Note The Silent Monitor StandAlone ComObject is supported for use on IPCC only.

The Standalone ComObject wraps calls to the CTI OS Session as well as
SilentMonitor manager. It provides the following four methods (displayed in IDL
format; IDL is the language used to define COM interfaces).

interface ISilentMonitor : IDispatch
{

[id(1), helpstring("method Connect to CTIOS")] HRESULT Connect
([in] IArguments * args, [out] int* returnvalue);

[id(2), helpstring("method Disconnect to CTIOS")] HRESULT
Disconnect (/*[in] IArguments * args, [out] int* returnvalue*/);

[id(3), helpstring("method StartMonitoring to CTIOS")] HRESULT
StartMonitoring ([in] IArguments * args, [out] int* returnvalue);

[id(4), helpstring("method StopMonitoring to CTIOS")] HRESULT
StopMonitoring ([in] IArguments * args, [out] int* returnvalue);

};

Connect
The Connect method establishes a Monitor Mode Session with the specified CTI
OS Server. The syntax and parameters are the same as for the CTI OS session
object Connect method (see “Returns” in Chapter 8, “Session Object”).

Disconnect
The Disconnect method disconnects an established session. This method has no
required parameters. See “CreateSilentMonitorManager” in Chapter 8, “Session
Object”for syntax and optional parameters.

StartMonitoring
The StartMonitoing method starts a Silent Monitor Session.The StartMonitoring
Arguments array contains the following parameters,
5-25
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
The Silent Monitor StandAlone ActiveX Control
Note If a pointer to the agent object is available (e.g., a m_MonitoredAgent), The
PeriperhalID can be retrieved via m_MonitoredAgent.GetValueInt
("PeripheralID")

StopMonitoring
The StopMonitoring method stops a Silent Monitor Session.The StopMonitoring
Arguments array contains the same parameters as the StartMonitoring method
(Table 5-2).

SilentMonitor Com Object Events
The ComObject will fire the following events via a COM connection point event
interface (again in IDL):

dispinterface _ISilentMonitorCtlEvents
{

properties:
methods:

 [id(1)] void OnConnection([in] IArguments *pIArguments);
 [id(2)] void OnConnectionFailure([in] IArguments *pIArguments);
 [id(5)] void OnMonitorModeEstablished([in] IArguments
*pIArguments);
 [id(39)] void OnConnectionClosed([in] IArguments *pIArguments);
 [id(41)] void OnControlFailureConf([in] IArguments
*pIArguments);
 [id(304)] void OnCtiOsFailure([in] IArguments *pIArguments);

 [id(502)] void OnCallRTPStartedEvent([in] IArguments
*pIArguments);

Table 5-2 StartMonitoring Arguments Array Parameters

Keyword Value

AgentID AgentID of the agent to be monitored.

Peripheralnumber PeripheralID of the Peripheral to which the Agent is
logged in.
5-26
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
The Silent Monitor StandAlone ActiveX Control
 [id(503)] void OnCallRTPStoppedEvent([in] IArguments
*pIArguments);

 [id(802)] void OnSilentMonitorStatusReportEvent([in] IArguments
*pIArguments);

 [id(803)] void OnStartSilentMonitorConf([in] IArguments
*pIArguments);

 [id(804)] void OnStopSilentMonitorConf([in] IArguments
*pIArguments);

 [id(805)] void OnSilentMonitorSessionDisconnected([in]
IArguments *pIArguments);

//
////

};

Following is a brief description of each event. These events are described in detail
in the Session Object and Silent Monitor Object sections of Chapter 6, “Event
Interfaces and Events.”

Table 5-3 SilentMonitor Com Object Events

Event Description

OnConnection Indicates that the connect method was
successful in establishing a connection.

OnConnectionFailure Indicates that an active connection has failed.
Can also indicate a bad parameter in the
Connect method

OnMonitorModeEstablished Signals a successful call to SetMsgFilter. The
call to Setmsgfilter is hidden by the
Standalone control.

OnConnectionClosed Disconnect was called and the connection is
now closed.

OnControlFailureConf A ControlFailureConf was received and can
be handled.

OnCtiOsFailure A CtiosFailure event was received. This could
be Silent Monitor specific error code.

OnCallRTPStartedEvent,
OnCallRTPStoppedEvent

RTP events have been received signaling the
start and stop of the RTP streams.
5-27
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
The Silent Monitor StandAlone ActiveX Control
Deployment
The StandAlone Com Object is a COM dll that needs to be registered on the client
system via the Regsvr32 Silentmonitorctl.dll. In addition, ccnsmt.dll and the two
standard CTI OS COM dlls (CTIOSClient.dll and Arguments.dll) are also
required.

Sample Usage in Visual Basic 6.0
The following sample code assumes a VB 6.0 form with 4 buttons (Connect,
Disconnect, StartMonitoring and StopMonitoring. If the parameters are based on
edit fields, the source code below is all that is needed to silent monitor via CTI
OS. It is important to note, that this control does not require supervisor privileges
or even any login. The only event handler shown below (OnSessionDisconnected)
is the one for a timed out Silent Monitor session. Other event handlers.

Dim WithEvents SilentMonitorCtl As SILENTMONITORCTLLib.SilentMonitor
Dim m_Args As New Arguments
Const CIL_OK = 1

Private Sub btnConnect_Click()
 m_Args.clear
 m_Args.AddItem “CtiosA”, “localhost”
 m_Args.AddItem “portA”, “42028”
 Dim nRetVal As Long
 SilentMonitorCtl.Connect m_Args, nRetVal
 If nRetVal <> CIL_OK Then

OnSilentMonitorStatusReport
Event

This event is used to report status from a
monitored client to the monitoring
application.

OnStartSilentMonitorConf,
OnStopSilentMonitorConf

These confs acknowledge that CTI OS
handled the StartMonitoring and
StopMonitoring request, respectively.

OnSilentMonitorSession
Disconnected

Indicates that the Silent Monitor session has
timed out on the monitoring side.

Table 5-3 SilentMonitor Com Object Events

Event Description
5-28
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
The Silent Monitor StandAlone ActiveX Control
 MsgBox "Connect returned error " + Str(nRetVal)
 End If
End Sub

Private Sub btnDisconnect_Click()
 Dim nRetVal As Long
 SilentMonitorCtl.Disconnect
End Sub

Private Sub btnStartMonitoring_Click()
 m_Args.clear
 m_Args.AddItem “AgentId”, “1000”
 m_Args.AddItem “PeripheralID”, “5004”
 Dim nRetVal As Long
 SilentMonitorCtl.StartMonitoring m_Args, nRetVal
 If nRetVal <> CIL_OK Then
 MsgBox "StartMonitoring returned error " + Str(nRetVal)
 End If
End Sub

Private Sub btnStopMonitoring_Click()
 m_Args.clear
 m_Args.AddItem “AgentId”, “1000”
 m_Args.AddItem “PeripheralID”, “5004”

 Dim nRetVal As Long
 SilentMonitorCtl.StopMonitoring m_Args, nRetVal
 If nRetVal <> CIL_OK Then
 MsgBox "StopMonitoring returned error " + Str(nRetVal)
 End If
End Sub

Private Sub SilentMonitorCtl_OnSessionDisconnected(ByVal pIArguments
As SILENTMONITORCTLLib.IArguments)
 MsgBox "SilentMonitorSession Disconnected Event"
End Sub
5-29
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 5 CTI OS ActiveX Controls
The Silent Monitor StandAlone ActiveX Control
5-30
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Ente

C H A P T E R 6

Event Interfaces and Events

This chapter describes the CTI OS Client Interface Library’s event publications
mechanism. Programs written to take advantage of CTI interfaces are generally
event driven, meaning that a code module in the application is executed when an
external event arrives. The CIL interface provides a rich set of event interfaces
and events for use by client programmers.

Events are generated asynchronously, either by the telephony equipment (for
example, phone, PBX, and ACD) or by the CTI environment (CTI Server, or CTI
OS Server). Each event passes an Arguments structure of key-value pairs that
contains all of the event parameters. These parameters are discussed in greater
detail in this chapter.

Event Publication Model

Note The CIL event interfaces discussed in this section and the following sections
apply only to the C++, COM, and VB interfaces. See “Events in Java CIL” for a
discussion of Java CIL counterpart events and event handling in the Java CIL See
“Events in .NET CIL”, for a discussion of .NET CIL event handling.

The Client Interface Library provides a publisher-subscriber model for notifying
clients of events. Client applications using the CIL can subscribe to one or more
of the CIL event interfaces. For detailed information and examples for how to
subscribe and unsubscribe for events, see Chapter 4, “Building Your
Application.”
6-1
rprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
Event Publication Model
The published CIL event interfaces are organized around the different classes of
CTI objects that the CIL provides. The event interfaces described in this chapter
are:

 • ISessionEvents. This interface publishes the events that relate to actions on
the Session object.

 • ICallEvents. This interface publishes the events that relate to actions on Call
objects.

 • IAgentEvents. This interface publishes the events that relate to actions on
Agent objects.

 • ISkillGroupEvents. This interface publishes the events that relate to actions
on SkillGroup objects.

 • IButtonEnablementEvents. This interface publishes the events that relate to
changes in the enable-disable status of softphone buttons.

 • ISilentMonitorEvents. This interface sends events to subscribers of the
Silent Monitor interface.

 • IMonitoredAgentEventsInterface. This interface fires Agent events to a
supervisor for his team members.

 • IMonitoredCallEventsInterface. This interface sends Call events to a
supervisor for one of his agent team members.

 • LogEventsAdapter (Java only). This class provides the default
implementation for the message handlers in ILogEvents.

 • IGenericEvents. This interface sends generic events to subscribers of the
IGenericEvents interface.

The remainder of this chapter provides the detailed description of each event
interface available from the CIL.

Note The data type listed for each keyword is the standardized data type discussed in
the section “CTIOS CIL Data Types” in Chapter 3, “CIL Coding Conventions.”
See Table 3-1 for the appropriate language specific types for these keywords.
6-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
ISessionEvents Interface
The Session object fires events on the ISessionEvents interface. The following
events are published to subscribers of the ISessionEvents interface.

OnConnection
The OnConnection event is generated after the Connect method succeeds. It
returns the name of the connected server and the connection time of day. The
client application need not take any special action but may use it to display
connection status.

Syntax

C++: void OnConnection(Arguments& args)
COM: void OnConnection (IArguments * args)
VB: session_OnConnection (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

EventTime INT Integer value with time of day expressed
in milliseconds.

CurrentServer STRING Name or TCP/IP address of the current
connected CTI OS server.
6-3
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
OnConnectionClosed
The OnConnectionClosed message is generated when a connection is terminated
by the client. This message has no fields. This event indicates successful
completion of an action that was initiated by the client (CIL or application using
the CIL). By contrast, the OnConnectionFailure event is generated when the
connection terminated for reasons other than that the client closed the connection.

OnConnectionFailure
The OnConnectionFailure event is generated when an established connection
fails. It returns the name of the failed connected server and the failure time of day.
Retry is automatic and can be followed by an OnConnection event when
connection is successfully reestablished. The client application need not take any
special action but may use this event to display connection status.

Syntax

C++: void OnConnectionFailure(Arguments& args)
COM: void OnConnectionFailure (IArguments * args)
VB: session_OnConnectionFailure (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

EventTime INT Integer value with time of day expressed in
milliseconds.

FailedServer STRING Name or TCP/IP address of the server that has
failed to respond. See ReasonCode.

ReasonCode SHORT SERVER_CONNECTIONBROKEN,
SERVER_MISSINGHEARTBEATS
6-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
OnConnectionRejected
The OnConnectionRejected event indicates that the client has tried to make a
connection using incompatible versions of the CTI OS Server and CTI OS CIL.

Syntax

C++: void OnConnectionRejected (Arguments& args)
COM: void OnConnectionRejected (IArguments * args)
VB: Session_OnConnectionRejected (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Not currently used, reserved for future use.

OnCTIOSFailure
The OnCTIOSFailure event indicates that the CTI Server has fired either a
FailureConf or a SystemEvent.

Syntax

C++: void OnCTIOSFailure (Arguments& args)
COM: void OnCTIOSFailure (IArguments * args)
VB: Session_OnCTIOSFailure (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.
6-5
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
Following are the enumerated values for Failure Code:

Keyword Type Description

FailureCode INT A value according to an enumerated value, as
shown immediately following this table.

SystemEventID INT Present only if FailureCode equals
ServerConnectionStatus. Contains a value
according to an enumerated value, as shown
immediately following this table.

SystemEventArg1 INT Present only if SystemEventID equals
SysPeripheralOnline or SysPeripheralOffline.
Contains the peripheral ID of the affected
peripheral.

ErrorMessage STRING An error message.

enum enumCTIOS_FailureCode

{

eDriverOutOfService = 1,

eServiceNotSupported = eDriverOutOfService + 1,

eOperationNotSupported = eServiceNotSupported + 1,

eInvalidPriviledge = eOperationNotSupported + 1,

eUnknownRequestID = eInvalidPriviledge + 1,

eUnknownEventID = eUnknownRequestID + 1,

eUnknownObjectID = eUnknownEventID + 1,

eRequiredArgMissing = eUnknownObjectID + 1,

eInvalidObjectState = eRequiredArgMissing

eServerConnectionStatus = eInvalidObjectState + 1,

eInconsistentAgentData = eServerConnectionStatus + 1,

eAgentAlreadyLoggedIn = eInconsistentAgentData + 1,

eForcedNotReadyForConfigError = eAgentAlreadyLoggedIn + 1

};
6-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
Following are the enumerated values for SystemEventID:

Remarks

See the descriptions of the CtiOs_Enums.FailureCode and
CtiOs_Enums.SystemEvent interfaces in the Javadoc for information on Java CIL
enumerations.

OnCurrentAgentReset
The OnCurrentAgentReset message is generated when the current agent is
removed from the session.

Syntax

C++: void OnCurrentAgentReset(Arguments& args)
COM:void OnCurrentAgentReset (IArguments * args)
VB: session_OnCurrentAgentReset (ByVal args As
CtiosCLIENTLib.IArguments)

enum enumCTIOS_SystemEventID

{ eSysCentralControllerOnline = 1,

eSysCentralControllerOffline = 2,

eSysPeripheralOnline = 3,

eSysPeripheralOffline = 4,

eSysTextFYI = 5,

eSysPeripheralGatewayOffline = 6,

eSysCtiServerOffline = 7,

eSysCtiServerOnline = 8,

eSysHalfHourChange = 9,

eSysInstrumentOutOfService = 10,

eSysInstrumentBackInService = 11,

eSysCtiServerDriverOnline = eSysInstrumentBackInService + 1,

eSysCtiServerDriverOffline = eSysCtiServerDriveOnline + 1,

eSysCTIOSServerOffline = eSysCtiServerDriverOffline + 1,

eSysCtiServerOnline = eSysCTIOSServerOffline + 1,

eSysAgentSummaryStatusOnline = eSysCTIOSServerOnline + 1,

eSysAgentSummaryStatusOffline = eSysAgentSummaryStatusOnline + 1

}

6-7
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
Parameters

args

Arguments array containing the following fields.

OnCurrentCallChanged
The OnCurrentCallChanged message is generated when the current call has
changed to another call.

Syntax

C++: void OnCurrentCallChanged(Arguments& args)
COM: void OnCurrentCallChanged (IArguments * args)
VB: session_OnCurrentCallChanged (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

OnFailure Event
Not supported.

Keyword Type Description

UniqueObjectID STRING Unique object ID (if any) of the old current
agent that was just removed.

Keyword Type Description

UniqueObjectID STRING Unique object ID (if any) of the new
current call.
6-8
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
OnGlobalSettingsDownloadConf
You can configure the client once in the CTI OS Server and then download this
configuration to each CTI OS client desktop. When an application executes the
RequestDesktopSettings method call on the Session, an
eGlobalSettingsDownloadRequest event is sent to the server.

In response, the server sends an OnGlobalSettingsDownloadConf event back to
the calling application. The Arguments object passed as a parameter in this event
contains the Desktop Settings configuration information. The Arguments object
is an array that can contain up to seven elements, each of which has the value of
a nested Arguments array in a hierarchy that closely matches that of the CTI OS
server configuration in the Windows registry.

Each of these Arguments arrays is a packed version of the configuration contained
in the CTI OS Server. Refer to the CTI OS System Manager's Guide for Cisco
ICM/IPCC Enterprise & Hosted Editions for more detailed information.

This section describes the contents of the Arguments array returned in the
OnGlobalSettingsDownloadConf event. Custom applications can add values at
the lowest level under each key. Custom values added in this way are passed to
the client in this event. This section also identifies which keys and values in the
CTI OS registry are passed to the client in this event.

To gain an understanding of what is available and how to configure these items,
see the following sections in the CTI OS System Manager's Guide for Cisco
ICM/IPCC Enterprise & Hosted Editions.

 • MainScreen

 • Defining Connection Profiles

 • Declaring ECC Variables

 • Configuring the Call Appearance Grid

 • Automatic Agent Statistics Grid Configuration

 • Automatic Skill Group Statistics Grid Configuration

Syntax

C++: void OnGlobalSettingsDownloadConf(Arguments & args)
COM: void OnGlobalSettingsDownloadConf(IArguments * args)
VB: session_OnGlobalSettingsDownloadConf(ByVal args As

CtiosCLIENTLib.IArguments)
6-9
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
Parameters

args

An Arguments array containing the Enterprise Desktop Settings
configuration from a CTI OS server. For a description of the Enterprise
Desktop Settings values listed below, see the CTI OS System Manager's
Guide for Cisco ICM/IPCC Enterprise & Hosted Editions.

The following are the top level elements in the Enterprise Desktop Settings
registry key. The CTI OS server passes configuration data for these elements
to the client in the OnGlobalSettingsConf event.

 – ECC (Expanded Call Context) variables

 – Grid

 – IPCCSilentMonitor

 – Login

 – ScreenPreferences

 – SoundPreferences

Other keys or values that are added to the EnterpriseDesktopSettings/All
Desktops key in the CTI OS server registry are passed to the client in the
DesktopSettings Arguments array as empty Arguments arrays.

The following sections describe the contents of the args array.

 • ECC – Arguments array that contains the Expanded Call Context (ECC)
variables declared on the CTI OS server in the “ECC/Name” registry
subtree.
6-10
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
The CTI OS server does not send any registry information contained in
the CTI OS registry keys representing the ECC scalar and array names.
Thus the ECC Arguments arrays are empty in the
OnGlobalSettingsDownloadConf event, regardless of the contents of
those keys.

Each ECC scalar configured in the CTI OS server registry is represented
as an empty Arguments array with keyword “user.<name>”, where
<name> is the ECC name as configured on CTI OS server.

Each ECC array configured in the CTI OS server registry is represented
as multiple empty Arguments arrays with keywords “user.<name>[0]” to
“user.<name>[n-1]”, where <name> is the ECC name as configured on
the CTI OS server and n is the size of the array as configured on the CTI
OS server.

 • Grid – Arguments array that contains information from the CTI OS
server registry’s Grid subtree. The grid element contains an Arguments
array of up to three Arguments arrays:

- AgentStatistics

- CallAppearance

- SkillGroupStatistics

Each of these arrays contains the keyword “columns,” an Arguments
array that contains multiple nested Arguments arrays with
key=<column_number>, where <column_number> corresponds to the
name of a key within the Columns/Number registry subtree.

“ECC”, <Arguments array>

user.Variable1, <Arguments array>

user.Array[0], <Arguments array>

user.Array[1], <Arguments array>

...

Null

Null

Null
6-11
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
The configuration information for any key or value added to the
SkillGroupStatistics, AgentStatistics, or CallAppearance registry keys is
not passed to the client in the OnGlobalSettingsDownloadConf event.

The value for each column number in the AgentStatistics and
SkillGroupStatistics element is an Arguments array containing the
following key-value pairs:

The value for each column number in the CallAppearance element is an
Arguments array containing the following key-value pairs:

You can add custom keys in the CTI OS Server registry’s Grid subtree at
the same level as the SkillGroupStatistics, AgentStatistics, and
CallAppearance keys. The Grid Arguments array within this event will
contain items corresponding to these custom keys. Any custom element
that you add must follow the same hierarchy in the registry as that used
by the existing top level elements.

Keyword Data Type

Type string

Header string

Custom values1

1. Other registry values added to the <column_number> registry key are passed in the
OnGlobalSettingsDownloadConf event. Subkeys added to the <column_number>
registry key are not passed in this event.

custom

Keyword Data Type

Type string

Header string

editable boolean

maxchars integer

Custom values1

1. Other registry values added to the <column_number> registry key are passed in the
OnGlobalSettingsDownloadConf event. Subkeys added to the <column_number>
registry key are not passed in this event.

custom
6-12
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
 • IPCCSilentMonitor – Arguments array that contains configuration
information from the CTI OS server registry’s IPCCSilentMonitor/
Name subtree.

The IPCCSilentMonitor Arguments array contains a nested Arguments
array with key=”settings.” This array contains the following key-value
pairs:

“Grid”, <Arguments array>

“AgentStatistics”, <Arguments array>

“Columns”, <Arguments array>

“1”, <Arguments array>

“Type”, “Var1”

“Header”, “MyVar1”

Custom, CustomValue
...

“CallAppearance”, <Arguments array>

“SkillGroupStatistics”, <Arguments array>

...

...
“CustomGridData”, <Arguments array>

...

...

Keyword Value

MediaTerminationPort integer

HeartBeatInterval integer

TOS boolean

MonitoringIPPort integer

HeartbeatTimeout integer
6-13
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
Configuration information for registry values added to the
IPCCSilentMonitor/Settings registry key is passed to the client in the
OnGlobalSettingsConf event. Configuration information for subkeys
added to the Settings registry key is not passed in this event.

You can add custom keys to the CTI OS registry in the
IPCCSilentMonitor subtree at the same level as the Settings key. The
IPCCSilentMonitor Arguments array within this event will contain items
corresponding to these custom keys. Any custom element that you add
must follow the same hierarchy in the registry as that used by the existing
top level elements.

The format of the IPCCSilentMonitor Arguments array follows.

 • Login – Arguments array that contains the information from the CTI OS
server registry’s Login subtree. This array contains a nested Arguments
array with key=”ConnectionProfiles” and with an Arguments array value
for each connection profile. The keyword of each array is the name for
the Connection Profile listed in the CTI OS server’s registry. The value
is another Arguments array.

“IPCCSilentMonitor”,<Arguments array>

“HeartbeatInterval”, 5

...

“CustomName”, Custom Value

“Settings”,<Arguments array>

“CustomSettings”,<Arguments array>

“CustomName”, CustomValue”
6-14
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
The following key-value pairs are contained in each connection profile
Arguments array:

Configuration information for keys or values that are added to the Login
registry key in the CTI OS server’s registry does not appear in the Login
Arguments array.

Keyword Value

CtiOsA string

CtiOsB string

PortA integer

PortB integer

Heartbeat integer

MaxHeartbeats integer

AutoLogin boolean

WarnIfAlreadyLoggedIn boolean

ShowFieldBitMask integer

RejectIfAlreadyLoggedIn boolean

PeripheralID integer

IPCCSilentMonitorEnabled boolean

TOS boolean

SwitchCapabilityBitMask integer

WarnIfSilentMonitored boolean

RasCallMode1 integer
1.Applicable only to RAS enabled IPCC Profiles
6-15
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
The format of the Login Arguments array follows.

SilentMonitorService Subkey

The <profile_name>/SilentMonitorService subkey contains parameters
that clients use to connect to one of a set of silent monitor services. It
contains the following keys.

“Login”,<Arguments array>

“ConnectionProfiles”,<Arguments array>

“IPCC”,<Arguments array>

“CtiOsA”, Machine1”

“PortA”, 42028

...

“CustomName”, “CustomValue”

“Aspect”,<Arguments array>

“CtiOsA”, “Machine2”

“PortA”, 42028

...

“CustomName”, “CustomeValue”

...

Keyword Value Description

ListenPort integer Port on which the silent monitor service
is listening for incoming connections.

TOS integer QOS setting for the connection.

HeartbeatInterval integer Amount of time in milliseconds between
heartbeats.
6-16
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
The following diagram illustrates the hierarchy of the
SilentMonitorService subkey.

HeartbeatRetries integer Number of missed heartbeats before the
connection is abandoned.

Cluster A key that contains a list of silent monitor
services to which the CIL tries to
connect. The CIL randomly chooses one
of the services in this list. This key
contains two subkeys.

 • 1 - index of the first silent monitor
service

 • N - index of the Nth silent monitor
service

All subkeys contain the following
keyword.

 • SilentMonitorService - host name or
IP adress of the silent monitor
service.

Keyword Value Description
6-17
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
 • ScreenPreferences – Arguments array that contains the information
configured in the CTI OS server registry’s ScreenPreferences/Name
subtree. The ScreenPreferences array contains an element MainScreen,
which is an Arguments array that contains the following key-value pairs:

You can add custom keys to the CTI OS registry in the ScreenPreferences
subtree at the same level as the “MainScreen” key. The
ScreenPreferences Arguments array within this event will contain items
corresponding to these custom keys. Any custom key that you add must
follow the same hierarchy in the registry as that used by the existing top
level keys.

Registry values added to the MainScreen registry key on the CTI OS
server are passed to the client in the OnGlobalSettingsDownloadConf
event. Subkeys added to the MainScreen registry key are not passed in
this event.

Keyword Value

AgentStatisticsIntervalSec integer

BringToFrontOnCall boolean

FlashOnCall boolean

RecordingEnabled boolean
6-18
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
The format of the ScreenPreferences Arguments array follows.

 • SoundPreferences – Arguments array that contains information
configured on the CTI OS server in the SoundPreferences/Name subtree.
This array includes a nested Arguments array that includes a setting for
each sound, including .wav files to be played, and whether or not each
one is mute. It may also include custom name/value pairs for a custom
application.

The SoundPreferences array contains the following key-value pairs:

“ScreenPreferences”, <Arguments array>

“MainScreen”, <Arguments array>

“BringToFrontOnCall”, 1

“FlashOnCall”, 0

“CustomName”, “CustomValue”

...

“CustomScreen”, <Arguments array>

“BringToFrontOnCall”, 1

...

“CustomName”, “CustomValue”

Keyword Value Subtree

DTMF* Arguments
array

SoundPreferences/Name/DTMF

DialTone* Arguments
array

SoundPreferences/Name/DialTone

OriginatingTone
*

Arguments
array

SoundPreferences/Name/OriginatingTone
6-19
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
* Registry values added to this registry key in the CTI OS server registry are included in

the arguments array. Subkeys added to this registry key are not present.

The DTMF, DialTone, OriginatingTone, RingInTone, and All arrays
each contain the keyword Mute, which has a boolean value. Custom
registry values added to the DialTone DTMF, DialTone,
OriginatingTone, RingInTone, and All registry keys are present in the
array. Subkeys added to the these registry keys are not present in the
array.

You can add custom keys in the SoundPreferences subtree at the same
level as the All, DTMF, DialTone, OriginatingTone, and RingInTone
keys. The SoundPreferences array contains items corresponding to these
custom keys. Any custom element that you add must follow the same
hierarchy in the registry as that used by the existing top level elements.

The format of the SoundPreferences Arguments array follows.

RingInTone* Arguments
array

SoundPreferences/Name/RingInTone

All* Arguments
array

SoundPreferences/Name/All

Keyword Value Subtree

“All”,<Arguments array>

“Mute”, 0

“DTMF”,<Arguments array>

“Mute”, 0

“CustomerName”,<Arguments array>

“CustomeName”, CustomValue

...

“SoundPreferences”,<Arguments array>

“CustomName”, CustomValue

“CustomName”, CustomValue
6-20
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
This configuration is stored in the Windows System Registry database
and many of the values are set when the CTI OS Server Setup is run.
Custom configuration can be set at a later time by using the Windows
Registry Editor.

OnHeartbeat
The OnHeartbeat event is generated when a heartbeat response is received from a
CTI OS server. It returns the time of day.

Syntax

C++:void OnHeartbeat(Arguments& args)
COM: void Onheartbeat (IArguments * args)
VB: session_OnHeartbeat (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

OnMissingHeartbeat
The OnMissingHeartbeat event is generated when an expected heartbeat is not
received. It returns the number of consecutive heartbeats missed and time of day.
When the number of heartbeats missed equals or exceeds the maximum number
of heartbeats allowed (set in the MaxHeartbeats property), an
OnConnectionFailure event is generated instead of an OnMissingHeartbeat event,
and the CIL automatically attempts to reconnect to the CTI OS server, alternating
between the CtiosA and CtiosB servers passed as parameters in the Connect
method.

Keyword Type Description

EventTime INT Integer value with time of day expressed in
milliseconds.
6-21
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
Syntax

C++: void OnMissingHeartbeat(Arguments& args)
COM: void OnMissingHeartbeat (IArguments * args)
VB: session_OnMissingHeartbeat (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

OnMonitorModeEstablished
The OnMonitorModeEstablished event is generated when Monitor Mode is
established.

Syntax

C++:void OnMonitorModeEstablished(Arguments& args)
COM: void OnMonitorModeEstablished (IArguments * args)
VB: session_OnMonitorModeEstablished (ByVal args As
CtiosCLIENTLib.IArguments)

Keyword Type Description

EventTime INT Integer value with time of day expressed in
milliseconds.

Consecutive
MissedHeartbeats

INT Integer value with the number of heartbeats
missed.

HeartbeatInterval INT Integer value with the heartbeat interval, in
milliseconds.
6-22
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
Parameters

args

Arguments array containing the following fields.

OnSnapshotDeviceConf
The OnSnapshotDeviceConf confirmation message is fired to the client as part of
a snapshot operation. For AgentMode clients, the OnSnapshotDeviceConf will
arrive at startup time, after the OnQueryAgentStateConf message. The
OnSnapshotDeviceConf indicates the number of calls present at the device, and
their UniqueObjectIDs.

Syntax

C++:void OnSnapshotDeviceConf (Arguments & args);
COM:HRESULT OnSnapshotDeviceConf ([in] IArguments * args);
VB:Session_ OnSnapshotDeviceConf (ByVal args as
CTIOSCLIENTLIB.IArguments)

Keyword Type Description

CIL
ConnectionID

STRING ID of the client’s connection on
the server.

StatusSystem ARGUMENTS Arguments array containing the
following elements:

 • StatusCTIServer

 • StatusCtiServerDriver

 • StatusCentralController

 • StatusPeripherals
(Arguments array with a
peripheral ID for each key
and a boolean true/false
value indicating if that
peripheral is online)
6-23
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
Parameters

args

Arguments array containing the following fields.

Remarks

The CIL uses this event to rectify the list of calls on a device when logging in after
a failover, in case the status of calls on the device changes during the failure
period. An example of such a scenario would be an agent talking on a call on a
hardphone and a CTI failure occurs. The agent hangs up the call before CTI is
recovered. Once CTI and the CIL recover, they use the snapshot to discover that
the call it currently has is no longer on the device. CTI then fires an EndCall event
to remove the call from its call list.

OnSnapshotSkillGroupList
Not supported.

Keyword Description Type

UniqueObjectID Unique ID of the device object on the
server. There are no device objects in
the CIL, so this keyword cannot be
used to retrieve a device object at this
point.

STRING

NumCalls The number of active calls associated
with this device, up to a maximum of
16.

SHORT

ValidCalls An arguments array containing the list
of calls on the device. The Unique
ObjectID of each call is a key in the
Arguments object. The value is a
boolean indicating if the call is valid.
Calls not listed are not valid calls on the
device.

ARGUMENTS
6-24
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
OnTranslationRoute
The OnTranslationRoute event is a pre-call indication. The event indicates the
pending arrival of a call, and provides early access to the call context information.
From a call flow perspective, this event can be used to begin an application or
database lookup for the call context data before the call actually arrives at the
agent’s teleset.

The contact is uniquely identified by the ICMEnterpriseUniqueID, which is
a field based on the ICM’s 64-bit unique key (RouterCallKeyDay and
RouterCallKeyCallID). This event does not indicate the creation of a Call
object on the CTI OS server – only that the contact is being tracked. This is
sufficient to be able to get and set data, which enables some powerful
data-prefetching applications. When a OnCallBeginEvent follows for this same
contact, the ICMEnterpriseUniqueID field will be send along with the call
data. At that point, a custom application can set the call data on the appropriate
call object.

Syntax

C++:void OnTranslationRoute(Arguments& args)
COM:void OnTranslationRoute(IArguments * args)
VB: session_OnTranslationRoute(ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

ICMEnterpriseUniqueID STRING This string is a globally unique key
for this contact, which corresponds
to the ICM 64 bit key. This
parameter can be used to match
this contact to a follow-on call
event.
6-25
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISessionEvents Interface
RouterCallKeyDay INT Together with the
RouterCallKeyCallID field forms
the unique 64-bit key for locating
this call’s records in the ICM
database. Only provided for
Post-routed and Translation-routed
calls.

RouterCalKeyCallID INT The call key created by the ICM.
The ICM resets this counter at
midnight.

RouterCallKey
SequenceNumber

INT Together with RouterCallKeyDay
and RouterCallKeyCallID fields
forms the TaskID.

NumNamedVariables SHORT Number of Named variables.

NumNamedArrays SHORT Number of Named Arrays.

ANI STRING The calling line ID of the caller.

UserToUserInfo STRING The ISDN user-to-user information
element.

DNIS STRING The DNIS number to which this
call will arrive on the ACD/PBX.

DialedNumber STRING The number dialed.

CallerEnteredDigits STRING The digits entered by the caller in
response to IVR prompting.

CallVariable1 STRING Call-related variable data.

… …

CallVariable10 STRING Call-related variable data.

ECC ARGUMENTS A nested Arguments structure of
key-value pairs for all of the ECC
data arriving with this call.
6-26
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
ICallEvents Interface
The Call object fires events on the ICallEvents interface. The following events are
published to subscribers of the ICallEvents interface.

Note Many of the parameters that CTI OS receives from the CTI Server are
inconsequential to most customer applications. The most important
parameters for doing a screenpop are included with the events described in this
section. The more inconsequential parameters are suppressed at the CTI OS
Server, to minimize network traffic to the clients. However, you can enable the
complete set of available event arguments by setting the following registry
setting:

[HKLM\Cisco Systems\CTIOS\Server\CallObject\MinimizeEventArgs = 0].

OnAgentPrecallEvent

Note The OnAgentPrecallEvent event is applicable to IPCC only. The equivalent on all
other TDM events is TranslationRouteEvent.

The OnAgentPrecallEvent event is a pre-call indication that indicates the pending
arrival of a call and provides early access to the call context information. From a
call flow perspective, this event can be used to begin an application or database
lookup for the call context data before the call actually arrives at the agent’s
teleset.

The contact is uniquely identified by the ICMEnterpriseUniqueID, which is
a field based on the ICM’s 64-bit unique key (RouterCallKeyDay and
RouterCallKeyCallID). This event does not indicate the creation of a Call
object on the CTIOS server – only that the contact is being tracked. This is
sufficient to be able to get and set data, which enables some powerful
data-prefetching applications. When an OnCallBeginEvent follows for this same
contact, the ICMEnterpriseUniqueID field will be send along with the call
data. At that point, a custom application can set the call data on the appropriate
call object.
6-27
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
Syntax

C++:void OnAgentPrecallEvent(Arguments& args)
COM: void OnAgentPrecallEvent (IArguments * args)
VB: session_OnAgentPrecallEvent (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

ICMEnterpriseUniqueID STRING This string is a globally unique key
for this contact, which corresponds
to the ICM 64 bit key. This
parameter can be used to match
this contact to a follow-on call
event.

RouterCallKeyDay INT Together with the
RouterCallKeyCallID field forms
the unique 64-bit key for locating
this call’s records in the ICM
database. Only provided for
Post-routed and Translation-routed
calls.

RouterCalKeyCallID INT The call key created by the ICM.
The ICM resets this counter at
midnight.

AgentInstrument STRING The agent instrument that the call
will be routed to.

NumNamedVariables SHORT Number of Named variables.

NumNamedArrays SHORT Number of Named Arrays.

ServiceNumber INT The service that the call is
attributed to, as known to the
peripheral.
6-28
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnAgentPrecallAbortEvent

Note The OnAgentPrecallAbortEvent event is applicable to IPCC only.

ServiceID INT The ICM ServiceID of the service
that the call is attributed to.

SkillGroupNumber INT The number of the agent
SkillGroup the call is attributed to,
as known to the peripheral.

SkillGroupID INT The ICM SkillGroupID of the
agent SkillGroup the call is
attributed to.

SkillGroupPriority SHORT The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

ANI STRING The calling line ID of the caller.

UserToUserInfo STRING The ISDN user-to-user information
element.

DNIS STRING The DNIS number to which this
call will arrive on the ACD/PBX.

DialedNumber STRING The number dialed.

CallerEnteredDigits STRING The digits entered by the caller in
response to IVR prompting.

CallVariable1 STRING Call-related variable data.

… …

CallVariable10 STRING Call-related variable data.

ECC ARGUMENTS A nested Arguments structure of
key-value pairs for all of the ECC
data arriving with this call.
6-29
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
The OnAgentPrecallAbortEvent event is received only if a previously indicated
routing (OnAgentPrecallEvent) decision is reversed. The contact is uniquely
identified by the ICMEnterpriseUniqueID, which is a field based on the ICM’s
64-bit unique key (RouterCallKeyDay and RouterCallKeyCallID). Upon
receipt of an OnAgentPrecallAbortEvent, any data pre-fetch work that was started on
an OnAgentPrecallEvent should be cleaned up.

Syntax

C++:void OnAgentPrecallAbortEvent(Arguments& args)
COM: void OnAgentPrecallAbortEvent (IArguments * args)
VB: session_OnAgentPrecallAbortEvent (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

ICMEnterpriseUniqueID STRING This string is a globally unique key
for this contact, which corresponds to
the ICM 64 bit key. This parameter
can be used to match this contact to a
follow-on call event.

RouterCallKeyDay INT Together with the RouterCallKey
CallID field forms the unique 64-bit
key for locating this call’s records in
the ICM database. Only provided for
Post-routed and Translation- routed
calls.

RouterCalKeyCallID INT The call key created by the ICM. The
ICM resets this counter at midnight.

AgentInstrument STRING The agent instrument that the call
will be routed to.
6-30
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnAlternateCallConf
The OnAlternateCallConf event is fired to the client to indicate that an Alternate
request was received by the CTI Server

Syntax

C++:void OnAlternateCallConf (Arguments & args);
COM: HRESULT OnAlternateCallConf ([in] IArguments * args);
VB:Session_ OnAlternateCallConf (ByVal args as
CTIOSCLIENTLIB.IArguments)

Parameters
args

Arguments array containing the following field.

OnAnswerCallConf
The OnAnswerCallConf event is fired to the client to indicate that an Answer
request was received by the CTI Server.

Syntax

C++: void OnAnswerCallConf (Arguments & args);
COM:HRESULT OnAnswerCallConf ([in] IArguments * args);
VB: Session_ OnAnswerCallConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Keyword Type Description

UniqueObjectID STRING An object ID that uniquely identifies
the call object.
6-31
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
Arguments array containing the following field.

OnCallBegin
The OnCallBegin event is generated at the first association between a call and the
CTI Client. The event passes the call identifier and the initial call context data.
The ConnectionCallID identifies the call. This message always precedes any
other event messages for that call.

Subsequent changes to the call context data (if any) are signalled by an
OnCallDataUpdate event containing the changed call data.

Note There can be multiple calls with the same ConnectionCallID value.

Syntax

C++: void OnCallBegin(Arguments& args)
COM: void OnCallBegin (IArguments * args)
VB: session_OnCallBegin (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

UniqueObjectID STRING An object ID that uniquely identifies
the call object.

Keyword Type Description

PeripheralID INT The ICM PeripheralID of the ACD
where the call activity occurred.

PeripheralType SHORT The type of the peripheral.
6-32
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
CallType SHORT The general classification of the call
type.

UniqueObjectID STRING An object ID that uniquely identifies
the call object.

RouterCallKeyDay INT Together with the
RouterCallKeyCallID field forms the
unique 64-bit key for locating this
call’s records in the ICM database.
Only provided for Post-routed and
Translation-routed calls.

RouterCalKeyCallID INT The call key created by the ICM. The
ICM resets this counter at midnight.

RouterCallKey
SequenceNumber

INT Together with RouterCallKeyDay
and RouterCallKeyCallID fields
forms the TaskID.

ConnectionCallID UINT The Call ID value assigned to this
call by the peripheral or the ICM.

ANI (optional) STRING The calling line ID of the caller.

DNIS (optional) STRING The DNIS provided with the call.

UserToUserInfo
(Optional)

STRING The ISDN user-to-user information
element. unspecified, up to 131
bytes.

DialedNumber
(Optional)

STRING The number dialed.

CallerEnteredDigits
(Optional)

STRING The digits entered by the caller in
response to IVR prompting.

ServiceNumber
(Optional)

INT The service that the call is attributed
to, as known to the peripheral. May
contain the special value
NULL_SERVICE when not
applicable or not available.

Keyword Type Description
6-33
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
ServiceID (Optional) INT The ICM ServiceID of the service
that the call is attributed to. May
contain the special value
NULL_SERVICE when not
applicable or not available.

SkillGroupNumber
(Optional)

INT The number of the agent SkillGroup
the call is attributed to, as known to
the peripheral. May contain the
special value NULL_SKILL_
GROUP when not applicable or not
available.

SkillGroupID
(Optional)

INT The ICM SkillGroupID of the agent
SkillGroup the call is attributed to.
May contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupPriority
(Optional)

SHORT The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

CallWrapupData
(Optional)

STRING Call-related wrap-up data.

CallVariable1
(Optional)

STRING Call-related variable data.

… …

CallVariable10
(Optional)

STRING Call-related variable data.

CallStatus (optional) SHORT The current status of the call.

Keyword Type Description
6-34
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnCallCleared
An OnCallCleared event is generated when the voice portion of all parties on a
call is terminated, normally when the last device disconnects from a call. With
this event the connection status becomes LCS_NULL.

Note If the CallCleared event is received after having received a CallFailed event, note
that the event will not include a CallStatus since it is important to preserve the fact
that the call failed (maintaining the CallStatus of LSC_Fail). Because of this
exception, the CallStatus of the CallCleared event is optional.

Syntax

C++:void OnCallDelivered(Arguments& args)

ECC (optional) ARGUMENTS Arguments array that contains all of
the Expanded Call Context variables
in use; for example:

user.ArrayVariable[0]
user.ArrayVariable[1]
...
user.ArrayVariable[n]
user.ScalarVariable

CTIClients (optional) ARGUMENTS Arguments array that contains the
information about the number of
clients that are using the call object;
for example:

CTIClient[1]

CTIClientSignature
CTIClientTimestamp

ICMEnterprise
UniqueID (optional)

STRING Required only when the call is
pre-routed.

Keyword Type Description
6-35
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
COM: void OnCallCleared (IArguments * args)
VB: session_OnCallCleared (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

OnCallConnectionCleared
An OnCallConnectionCleared event is generated when a party drops from a call.
With this event the connection status becomes LCS_NULL.

Note If the CallConnectionCleared event is received after having received a CallFailed
event, note that the event will not include a CallStatus since it is important to
preserve the fact that the call failed (maintaining the CallStatus of LSC_Fail).
Because of this exception, the CallStatus of the CallConnectionCleared event is
optional.

Syntax

C++: void OnCallConnectionCleared(Arguments& args)
COM: void OnCallConnectionCleared (IArguments * args)

Keyword Type Description

EnablementMask INT Contains the bit-mask that specifies what
buttons can be enabled or disabled when
this call is the current call.

UniqueObjectID STRING An object ID that uniquely identifies the
call object.

CallStatus SHORT The current status of the call.

ICMEnterprise
UniqueID (Optional)

STRING Required only when the call is pre-routed.
6-36
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
VB: session_OnCallConectionCleared (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

OnCallConferenced
The joining of calls into a conference call or the adding of a new call joining a
conference may generate an OnCallConferenced event. With this event, the
connections at the controller’s device merge to become one connection with a
status of LCS_CONNECT, and the status of the connections at the original
caller’s device and at the consulted device remain unchanged.

Syntax

C++:void OnCallConferenced(Arguments& args)
COM: void OnCallConferenced (IArguments * args)
VB: session_OnCallConferenced (ByVal args As
CtiosCLIENTLib.IArguments)

Keyword Type Description

EnablementMask INT Contains the bit-mask that specifies what
buttons can be enabled or disabled when this
call is the current call.

UniqueObjectID STRING An object ID that uniquely identifies the call
object.

CallStatus SHORT The current status of the call.

ICMEnterprise
UniqueID (Optional)

STRING Required only when the call is pre-routed.
6-37
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
Parameters

args

Arguments array containing the following fields.

Keyword Type Description

PeripheralID INT The ICM PeripheralID of the ACD
where the call activity occurred.

PeripheralType SHORT The type of the peripheral.

CallType SHORT The general classification of the call
type.

UniqueObjectID STRING An object ID that uniquely identifies
the call object.

RouterCallKeyDay INT Together with the
RouterCallKeyCallID field forms the
unique 64-bit key for locating this
call’s records in the ICM database.
Only provided for Post-routed and
Translation-routed calls.

RouterCalKeyCallID INT The call key created by the ICM. The
ICM resets this counter at midnight.

ConnectionCallID UINT The Call ID value assigned to this
call by the peripheral or the ICM.

ANI (optional) STRING The calling line ID of the caller.

DNIS (optional) STRING The DNIS provided with the call.

UserToUserInfo
(Optional)

STRING The ISDN user-to-user information
element. unspecified, up to 131
bytes.

DialedNumber
(Optional)

STRING The number dialed.

CallerEnteredDigits
(Optional)

STRING The digits entered by the caller in
response to IVR prompting.
6-38
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
ServiceNumber
(Optional)

INT The service that the call is attributed
to, as known to the peripheral. May
contain the special value
NULL_SERVICE when not
applicable or not available.

ServiceID (Optional) INT The ICM ServiceID of the service
that the call is attributed to. May
contain the special value
NULL_SERVICE when not
applicable or not available.

SkillGroupNumber
(Optional)

INT The number of the agent SkillGroup
the call is attributed to, as known to
the peripheral. May contain the
special value
NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupID
(Optional)

INT The ICM SkillGroupID of the agent
SkillGroup the call is attributed to.
May contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupPriority
(Optional)

SHORT The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

CallWrapupData
(Optional)

STRING Call-related wrap-up data.

CallVariable1
(Optional)

STRING Call-related variable data.

… …

CallVariable10
(Optional)

STRING Call-related variable data.

CallStatus (optional) SHORT The current status of the call.

Keyword Type Description
6-39
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnCallDataUpdate
Changes to the call context data will generate an OnCallDataUpdate event. Only
the items that have changed will be in the event argument array. The initial call
context is provided in the OnCallBegin event.

Syntax

C++: void OnCallDataUpdate(Arguments& args)
COM: void OnCallDataUpdate (IArguments * args)
VB: session_OnCallDataUpdate (ByVal args As
CtiosCLIENTLib.IArguments)

ECC (optional) ARGUMENTS Arguments array that contains all of
the Expanded Call Context variables
in use; for example:

user.ArrayVariable[0]
user.ArrayVariable[1]
...
user.ArrayVariable[n]
user.ScalarVariable

CTIClients (Optional) ARGUMENTS Arguments array that contains the
information about the number of
clients that are using the call object;
for example:

CTIClient[1]

CTIClientSignature
CTIClientTimestamp

ICMEnterpriseUnique
ID (Optional)

STRING Required only when the call is
pre-routed.

Keyword Type Description
6-40
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
Parameters

args

Arguments array containing the following fields.

Keyword Type Description

PeripheralID INT The ICM PeripheralID of the ACD
where the call activity occurred.

PeripheralType SHORT The type of the peripheral.

CallType SHORT The general classification of the call
type.

UniqueObjectID STRING An object ID that uniquely identifies
the call object.

RouterCallKeyDay INT Together with the
RouterCallKeyCallID field forms the
unique 64-bit key for locating this
call’s records in the ICM database.
Only provided for Post-routed and
Translation-routed calls.

RouterCalKeyCallI
D

INT The call key created by the ICM. The
ICM resets this counter at midnight.

RouterCallKey
SequenceNumber

INT Together with RouterCallKeyDay and
RouterCallKeyCallID fields forms the
TaskID.

ConnectionCallID UINT The Call ID value assigned to this call
by the peripheral or the ICM.

ANI (optional) STRING The calling line ID of the caller.

DNIS (optional) STRING The DNIS provided with the call.

UserToUserInfo
(Optional)

STRING The ISDN user-to-user information
element. unspecified, up to 131 bytes.

DialedNumber
(Optional)

STRING The number dialed.

CallerEnteredDigits
(Optional)

STRING The digits entered by the caller in
response to IVR prompting.
6-41
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
ServiceNumber
(Optional)

INT The service that the call is attributed to,
as known to the peripheral. May
contain the special value
NULL_SERVICE when not applicable
or not available.

ServiceID (Optional) INT The ICM ServiceID of the service that
the call is attributed to. May contain the
special value NULL_SERVICE when
not applicable or not available.

SkillGroupNumber
(Optional)

INT The number of the agent SkillGroup the
call is attributed to, as known to the
peripheral. May contain the special
value NULL_SKILL_GROUP when
not applicable or not available.

SkillGroupID
(Optional)

INT The ICM SkillGroupID of the agent
SkillGroup the call is attributed to. May
contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupPriority
(Optional)

SHORT The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

CallWrapupData
(Optional)

STRING Call-related wrap-up data.

CallVariable1
(Optional)

STRING Call-related variable data.

… …

CallVariable10
(Optional)

STRING Call-related variable data.

CallStatus (optional) SHORT The current status of the call.

Keyword Type Description
6-42
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnCallDelivered
The OnCallDelivered event may be generated when the call arrives at the agent’s
teleset. Both parties (call connections) receive this event. With this event, the
called party’s connection status becomes LCS_ALERTING but the calling party’s
connection status remains LCS_INITIATE.

Note With certain switches, when a call is made outside of the ACD, this event may not
be received. See OnCallReachedNetwork for more detail.

Syntax

C++: void OnCallDelivered(Arguments& args)
COM: void OnCallDelivered (IArguments * args)

ECC (optional) ARGUMENTS Arguments array that contains all of the
Expanded Call Context variables in
use; for example:

user.ArrayVariable[0]
user.ArrayVariable[1]
...
user.ArrayVariable[n]
user.ScalarVariable

CTIClients
(Optional)

ARGUMENTS Arguments array that contains the
information about the number of clients
that are using the call object; for
example:

CTIClient[1]

CTIClientSignature
CTIClientTimestamp

ICMEnterprise
UniqueID (Optional)

STRING Required only when the call is
pre-routed.

Keyword Type Description
6-43
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
VB: session_OnCallDelivered (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

ServiceNumber INT The service that the call is attributed to,
as known to the peripheral. May
contain the special value
NULL_SERVICE when not applicable
or not available.

ServiceID INT The ICM ServiceID of the service that
the call is attributed to. May contain the
special value NULL_SERVICE when
not applicable or not available.

SkillGroupNumber
(Optional)

INT The number of the agent SkillGroup the
call is attributed to, as known to the
peripheral. May contain the special
value NULL_SKILL_GROUP when
not applicable or not available.

SkillGroupID (Optional) INT The ICM SkillGroupID of the agent
SkillGroup the call is attributed to. May
contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupPriority
(Optional)

SHORT The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

LineType SHORT Indicates the type of the teleset line.

EnablementMask INT Contains the bit-mask that specifies
what buttons can be enabled or disabled
when this call is the current call. See
Table 3-2.
6-44
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnCallDequeuedEvent
The explicit removal of a call from the ACD queue may generate a
OnCallDequeuedEvent message to the CTI Client.

Syntax

C++: void OnCallDequeuedEvent(Arguments& args)
COM: void OnCallDequeuedEvent (IArguments * args)
VB: session_OnCallDequeuedEvent (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

UniqueObjectID STRING An object ID that uniquely identifies
the call object.

CallStatus SHORT The current status of the call.

ICMEnterpriseUniqueID
(Optional)

STRING Required only when the call is
pre-routed.

TrunkNumber (optional) INT The number representing a trunk.

TrunkGroup Number
(optional)

INT The number representing a trunk group.

Keyword Type Description
6-45
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
Keyword Type Description

Connection DeviceID INT The identifier of the connection between the
call and the device.

ConnectionDevice
IDType

SHORT Indicates the type of the connection
identifier supplied in the
ConnectionDeviceID.

LocalConnection State SHORT The state of the local end of the connection.

EventCause SHORT Indicates a reason or explanation for the
occurrence of the event.

LineHandle SHORT Identifies the teleset line being used.

LineType SHORT Indicates the type of the teleset line.

ServiceID INT The ICM ServiceID of the service that the
call is attributed to.

ServiceNumber INT The service that the call is attributed to, as
known to the peripheral.

SkillGroupID INT The ICM SkillGroupID of the agent
SkillGroup the call is attributed to.

SkillGroupNumber INT The number of an agent SkillGroup queue
that the call has been added to, as known to
the peripheral.

SkillGroupPriority SHORT The priority of the skill group, or 0 when
skill group priority is not applicable or not
available.

NumQueued SHORT The number of calls in the queue for this
service.

NumSkillGroups SHORT The number of Skill Group queues that the
call has queued to, up to a maximum of 20.
This value also indicates the number of
SkillGroupNumber, SkillGroupID and
SkillGroupPriority floating fields present in
the floating part of the message.
6-46
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnCallDiverted
The removal of a call from one delivery target and forwarded to a different target
may generate an OnCallDiverted event.

Syntax

C++: void OnCallDiverted(Arguments& args)
COM: void OnCallDiverted (IArguments * args)
VB: session_OnCallDiverted (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

UniqueObjectID STRING Unique reference generated for a call at
client.

PeripheralID INT The ICM PeripheralID of the ACD where
the call activity occurred.

PeripheralType SHORT The type of the peripheral.

ConnectionDevice
IDType

SHORT Indicates the type of
ConnectionDeviceID value.

Connection
DeviceID

INT The device identifier of the connection
between the call and the device.

ConnectionCallID UINT The Call ID value assigned to this call by
the peripheral or the ICM.

ServiceNumber INT The service that the call is attributed to, as
known to the peripheral. May contain the
special value NULL_SERVICE when not
applicable or not available.
6-47
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnCallEnd
The OnCallEnd event is generated when the association between a call and the
CTI Client is dissolved. The OnCallEnd event is the last event received for a Call.

Syntax

C++: void OnCallEnd(Arguments& args)
COM: void OnCallEnd (IArguments * args)
VB: session_OnCallEnd (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

ServiceID INT The ICM ServiceID of the service that the
call is attributed to. May contain the
special value NULL_SERVICE when not
applicable or not available.

DivertingDevice
Type

SHORT Indicates the type of the device identifier
supplied in the DivertingDeviceID field.

CalledDeviceType SHORT Indicates the type of the device identifier
supplied in the CalledDeviceID field.

LocalConnection
State

SHORT The state of the local end of the
connection.

EventCause SHORT Indicates a reason or explanation for the
occurrence of the event.

DivertingDeviceID
(Optional)

STRING The device identifier of the device from
which the call was diverted.

CalledDeviceID
(Optional)

STRING The device identifier of the device to
which the call was diverted.

Keyword Type Description
6-48
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnCallEstablished
The OnCallEstablished event may be generated when the call is answered at the
agent’s teleset. Both parties (call connections) receive this event when the call is
answered. With this event, the call status of both parties becomes
LCS_CONNECT.

Note With certain switches, when a call is made outside of the ACD, this event may not
be received. See OnCallReachedNetwork for more detail.

Syntax

C++: void OnCallEstablished(Arguments& args)
COM:void OnCallEstablished (IArguments * args)
VB: session_OnCallEstablished (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

UniqueObjectID STRING An object ID that uniquely identifies the
call object.

CallStatus (optional) SHORT The current status of the call.

ICMEnterprise
UniqueID (optional)

STRING Required only when the call is pre-routed.
6-49
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
Keyword Type Description

ServiceNumber INT The service that the call is attributed to,
as known to the peripheral. May
contain the special value NULL_
SERVICE when not applicable or not
available.

ServiceID INT The ICM ServiceID of the service that
the call is attributed to. May contain the
special value NULL_SERVICE when
not applicable or not available.

SkillGroupNumber
(Optional)

INT The number of the agent SkillGroup the
call is attributed to, as known to the
peripheral. May contain the special
value NULL_SKILL_GROUP when
not applicable or not available.

SkillGroupID (Optional) INT The ICM SkillGroupID of the agent
SkillGroup the call is attributed to. May
contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupPriority
(Optional)

SHORT The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

LineType SHORT Indicates the type of the teleset line.

EnablementMask INT Contains the bit-mask that specifies
what buttons can be enabled or disabled
when this call is the current call. See
Table 3-2.

UniqueObjectID STRING An object ID that uniquely identifies
the call object.

CallStatus SHORT The current status of the call.

ICMEnterpriseUniqueID
(Optional)

STRING Required only when the call is
pre-routed.
6-50
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnCallFailed
The OnCallFailed event may be generated when a call cannot be completed. With
this event the connection status becomes LCS_FAIL. This would most likely
happen as a result of a MakeCall or a MakeConsultCall request, but can occur at
any other point in the call’s lifetime if the call fails on an ACD. In this case, you
should perform any required cleanup prior to arrival of an EndCall event.

Note The events (CallConnectionCleared and CallCleared) received after the
CallFailed event will not include a CallStatus, because until the call has ended, it
is important to preserve the fact that this is a failed call.

Syntax

C++: void OnCallFailed(Arguments& args)
COM: void OnCallFailed (IArguments * args)
VB: session_OnCallFailed (ByVal args As CtiosCLIENTLib.IArguments

Parameters

args

Arguments array containing the following fields.

TrunkNumber (optional) INT The number representing a trunk.

TrunkGroup Number
(optional)

INT The number representing a trunk group.

Keyword Type Description

Keyword Type Description

EnablementMask INT Contains the bit mask that specifies
what buttons can be enabled or
disabled when this call is the current
call.
6-51
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnCallHeld
Placing a call on hold at the agent’s teleset may generate an OnCallHeld event.
With this event the connection status becomes LCS_HELD.

Syntax

C++:void OnCallHeld(Arguments& args)
COM: void OnCallHeld (IArguments * args)
VB: session_OnCallHeld (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

UniqueObjectID STRING An object ID that uniquely identifies
the call object.

CallStatus SHORT The current status of the call.

Keyword Type Description

EnablementMask INT Contains the bit-mask that specifies
what buttons can be enabled or disabled
when this call is the current call.

UniqueObjectID STRING An object ID that uniquely identifies
the call object.

CallStatus SHORT The current status of the call.

ICMEnterpriseUniqueID
(Optional)

STRING Required only when the call is
pre-routed.
6-52
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnCallOriginated
The initiation of a call from the peripheral may generate an OnCallOriginated
event. Only the connection making the call receives this event. With this event the
connection status becomes LCS_INITIATE.

Syntax

C++: void OnCallOriginated(Arguments& args)
COM: void OnCallOriginated (IArguments * args)
VB: session_OnCallOriginated (ByVal args As
CtiosCLIENTLib.IArguments

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

ServiceNumber INT The service that the call is attributed to, as
known to the peripheral. May contain the
special value NULL_SERVICE when not
applicable or not available.

ServiceID INT The ICM ServiceID of the service that the
call is attributed to. May contain the special
value NULL_SERVICE when not
applicable or not available.

SkillGroupNumber
(Optional)

INT The number of the agent SkillGroup the call
is attributed to, as known to the peripheral.
May contain the special value
NULL_SKILL_GROUP when not
applicable or not available.
6-53
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnCallQueuedEvent
The placing of a call in a queue pending the availability of some resource may
generate an OnCallQueuedEvent message to the CTI Client. Clients with Client
Events Service may receive this message when an outbound call is queued waiting
for a trunk or other resource. Clients with All Events Service may also receive this
message when inbound calls are queued.

Syntax

C++: void OnCallQueuedEvent(Arguments& args)
COM: void OnCallQueuedEvent (IArguments * args)
VB: session_OnCallQueuedEvent (ByVal args As
CtiosCLIENTLib.IArguments)

SkillGroupID
(Optional)

INT The ICM SkillGroupID of the agent
SkillGroup the call is attributed to. May
contain the special value NULL_SKILL_
GROUP when not applicable or not
available.

SkillGroupPriority
(Optional)

SHORT The priority of the skill group, or 0 when
skill group priority is not applicable or not
available.

LineType SHORT Indicates the type of the teleset line.

EnablementMask INT Contains the bit-mask that specifies what
buttons can be enabled or disabled when
this call is the current call.

UniqueObjectID STRING An object ID that uniquely identifies the
call object.

CallStatus SHORT The current status of the call.

Keyword Type Description
6-54
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
Parameters

args

Arguments array containing the following fields.

Keyword Type Description

Connection DeviceID INT The identifier of the connection
between the call and the device.

ConnectionDevice
IDType

SHORT Indicates the type of the connection
identifier supplied in the
ConnectionDeviceID

QueuedDeviceID STRING The device identifier of the queuing
device.

QueuedDeviceIDType SHORT Indicates the type of the device
identifier supplied in the
QueuedDeviceID.

CallingDeviceID STRING The device identifier of the calling
device.

CallingDeviceIDType SHORT Indicates the type of the device
identifier supplied in the
CalledDeviceID.

CalledDeviceID STRING The device identifier of the called
device.

CalledDeviceIDType SHORT Indicates the type of the device
identifier supplied in the
CalledDeviceID.

LastRedirectedDeviceID STRING The device identifier of the redirecting
device.

LastRedirected
DeviceIDType

SHORT Indicates the type of the device
identifier supplied in the
LastRedirectDeviceID.

LocalConnection State SHORT The state of the local end of the
connection.

EventCause SHORT Indicates a reason or explanation for
the occurrence of the event.
6-55
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnCallReachedNetworkEvent
The connection of an outbound call to another network may generate an
OnCallReachedNetworkEvent. With some switches outside of the ACD, this may
be the last event the outbound connection receives. For these switches, you may
not assume that when the called party receives and answers the call that the
OnCallDelivered and OnCallEstablished events will be received.

LineHandle SHORT Identifies the teleset line being used.

LineType SHORT Indicates the type of the teleset line.

ServiceID INT The ICM ServiceID of the service that
the call is attributed to.

ServiceNumber INT The service that the call is attributed to,
as known to the peripheral.

SkillGroupID INT The ICM SkillGroupID of the agent
SkillGroup the call is attributed to.

SkillGroupNumber INT The number of an agent SkillGroup
queue that the call has been added to, as
known to the peripheral.

SkillGroupPriority SHORT The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

NumQueued SHORT The number of calls in the queue for
this service.

NumSkillGroups SHORT The number of Skill Group queues that
the call has queued to, up to a
maximum of 20. This value also
indicates the number of SkillGroup
Number, SkillGroupID and SkillGroup
Priority floating fields present in the
floating part of the message.

Keyword Type Description
6-56
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
Syntax

C++: void OnCallReachedNetworkEvent(Arguments& args)
COM: void OnCallReachedNetworkEvent (IArguments * args)
VB: session_OnCallReachedNetworkEvent (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

Connection
DeviceID

STRING The identifier of the connection between
the call and the device.

ConnectionDevice
IDType

SHORT Indicates the type of the connection
identifier supplied in the
ConnectionDeviceID.

TrunkUsedDeviceID STRING The device identifier of the selected
trunk.

TrunkUsedDeviceID
Type

SHORT Indicates the type of the device identifier
supplied in the TrunkUsedDeviceID.

CalledDeviceID STRING The device identifier of the called device.

CalledDeviceIDTyp
e

SHORT Indicates the type of the device identifier
supplied in the CalledDeviceID.

LocalConnection
State

SHORT The state of the local end of the
connection.

EventCause SHORT Indicates a reason or explanation for the
occurrence of the event.

LineHandle SHORT Identifies the teleset line being used.

LineType SHORT Indicates the type of the teleset line.

TrunkNumber
(optional)

INT The number representing a trunk.

TrunkGroup Number
(optional)

INT The number representing a trunk group.
6-57
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnCallRetrieved
Resuming a call previously placed on hold at the agent’s teleset may generate an
OnCallRetrieved event. With this event the connection status becomes
LCS_CONNECT.

Syntax

C++: void OnCallRetrieved(Arguments& args)
COM: void OnCallRetrieved (IArguments * args)
VB: session_OnCallRetrieved (ByVal args As
CtiosCLIENTLib.IArguments

Parameters

args

Arguments array containing the following fields.

OnCallServiceInitiatedEvent
The initiation of telecommunications service (“dial tone”) at the agent’s teleset
may generate an OnCallServiceInitiatedEvent to the CTI Client. However, when
the call is made through the software there is no way to detect the equivalent of
the phone off hook. Therefore, after a call is made this event is received in
sequence along with the OnCallOriginated and OnCallDelivered events. With this
event the connection status becomes LCS_INITIATE.

Keyword Type Description

EnablementMask INT Contains the bit-mask that specifies what
buttons can be enabled or disabled when
this call is the current call.

UniqueObjectID STRING An object ID that uniquely identifies the
call object.

CallStatus SHORT The current status of the call.
6-58
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
Syntax

C++: void OnCallServiceInitiatedEvent(Arguments& args)
COM: void OnCallServiceInitiatedEvent (IArguments * args)
VB: session_OnCallServiceInitiatedEvent (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

ServiceNumber INT The service that the call is attributed to, as
known to the peripheral. May contain the
special value NULL_SERVICE when not
applicable or not available.

ServiceID INT The ICM ServiceID of the service that the
call is attributed to. May contain the special
value NULL_SERVICE when not
applicable or not available.

SkillGroupNumber
(Optional)

INT The number of the agent SkillGroup the call
is attributed to, as known to the peripheral.
May contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupID
(Optional)

INT The ICM SkillGroupID of the agent
SkillGroup the call is attributed to. May
contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupPriority
(Optional)

SHORT The priority of the skill group, or 0 when
skill group priority is not applicable or not
available.

LineType SHORT Indicates the type of the teleset line.
6-59
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnCallStartRecordingConf
The OnCallStartRecordingConf event is fired to the client to indicate that a
StartRecord request was received by the CTI Server.

Syntax

C++: void OnCallStartRecordingConf (Arguments & args);
COM: HRESULT OnCallStartRecordingConf ([in] IArguments * args);
VB: Session_ OnCallStartRecordingConf (ByVal args as
CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

OnCallStopRecordingConf
The OnCallStopRecordingConf event is fired to the client to indicate that a
StopRecord request was received by the CTIServer.

EnablementMask INT Contains the bit-mask that specifies what
buttons can be enabled or disabled when
this call is the current call.

UniqueObjectID STRING An object ID that uniquely identifies the
call object.

CallStatus SHORT The current status of the call.

Keyword Type Description

Keyword Type Description

UniqueObjectID STRING An object ID that uniquely identifies
the call object.
6-60
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
Syntax

C++: void OnCallStopRecordingConf (Arguments & args);
COM: HRESULT OnCallStopRecordingConf ([in] IArguments * args);
VB: Session_ OnCallStopRecordingConf (ByVal args as
CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

OnCallTransferred
The transfer of a call to another destination may generate an OnCallTransferred
event. With this event the two connections at the controller’s device end and the
status of the connections at the original caller’s device and the consulted device
are unchanged.

Syntax

C++: void OnCallTransferred(Arguments& args)
COM: void OnCallTransferred (IArguments * args)
VB: session_OnCallTransferred (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

UniqueObjectID STRING An object ID that uniquely identifies
the call object.
6-61
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
Keyword Type Description

PeripheralID INT The ICM PeripheralID of the ACD
where the call activity occurred.

PeripheralType SHORT The type of the peripheral.

CallType SHORT The general classification of the
call type.

UniqueObjectID STRING An object ID that uniquely
identifies the call object.

RouterCallKeyDay INT Together with the
RouterCallKeyCallID field forms
the unique 64-bit key for locating
this call’s records in the ICM
database. Only provided for
Post-routed and Translation-routed
calls.

RouterCalKeyCallID INT The call key created by the ICM.
The ICM resets this counter at
midnight.

ConnectionCallID UINT The Call ID value assigned to this
call by the peripheral or the ICM.

ANI (optional) STRING The calling line ID of the caller.

DNIS (optional) STRING The DNIS provided with the call.

UserToUserInfo
(Optional)

STRING The ISDN user-to-user information
element. unspecified, up to 131
bytes.

DialedNumber
(Optional)

STRING The number dialed.

CallerEnteredDigits
(Optional)

STRING The digits entered by the caller in
response to IVR prompting.

ServiceNumber
(Optional)

INT The service that the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SERVICE when not
applicable or not available.
6-62
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
ServiceID (Optional) INT The ICM ServiceID of the service
that the call is attributed to. May
contain the special value
NULL_SERVICE when not
applicable or not available.

SkillGroupNumber
(Optional)

INT The number of the agent
SkillGroup the call is attributed to,
as known to the peripheral. May
contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupID (Optional) INT The ICM SkillGroupID of the
agent SkillGroup the call is
attributed to. May contain the
special value
NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupPriority
(Optional)

SHORT The priority of the skill group, or 0
when skill group priority is not
applicable or not available.

CallWrapupData
(Optional)

STRING Call-related wrap-up data.

CallVariable1 (Optional) STRING Call-related variable data.

… …

CallVariable10
(Optional)

STRING Call-related variable data.

CallStatus (Optional) SHORT The current status of the call.

Keyword Type Description
6-63
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnClearCallConf
The OnClearCallConf event is fired to the client to indicate that a Clear request
was received by the CTIServer.

Syntax

C++: void OnClearCallConf (Arguments & args);
COM: HRESULT OnClearCallConf ([in] IArguments * args);
VB:Session_ OnClearCallConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

ECC (optional) ARGUMENTS Arguments array that contains all
of the Expanded Call Context
variables in use; for example:

user.ArrayVariable[0]
user.ArrayVariable[1]
...
user.ArrayVariable[n]
user.ScalarVariable

CTIClients (Optional) ARGUMENTS Arguments array that contains the
information about the number of
clients that are using the call
object; for example:

CTIClient[1]

CTIClientSignature
CTIClientTimestamp

ICMEnterpriseUniqueID
(Optional)

STRING Required only when the call is
pre-routed.

Keyword Type Description
6-64
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnClearConnectionConf
The OnClearConnectionConf event is fired to the client to indicate that a
ClearConnection request was received by the CTIServer.

Syntax

C++: void OnClearConnectionConf (Arguments & args);
COM:HRESULT OnClearConnectionConf ([in] IArguments * args);
VB: Session_ OnClearConnectionConf (ByVal args as
CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

Keyword Type Description

UniqueObjectID STRING An object ID that uniquely identifies
the call object.

Keyword Type Description

UniqueObjectID STRING An object ID that uniquely identifies
the call object.

Keyword Type Description

UniqueObjectID STRING An object ID that uniquely identifies
the call object.
6-65
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnConferenceCallConf
The OnConferenceCallConf event is fired to the client to indicate that a
ConferenceCall or SingleStepConferenceCall request was received by the
CTIServer.

Syntax

C++: void OnConferenceCallConf (Arguments & args);
COM: HRESULT OnConferenceCallConf ([in] IArguments * args);
VB: Session_ OnConferenceCallConf (ByVal args as
CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

OnConsultationCallConf
The OnConsultationCallConf event is fired to the client to indicate that a
MakeConsultCall request was received by the CTIServer.

Syntax

C++: void OnConsultationCallConf (Arguments & args);
COM: HRESULT OnConsultationCallConf ([in] IArguments * args);
VB:Session_ OnConsultationCallConf (ByVal args as
CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.
6-66
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnControlFailureConf
The OnControlFailureConf event is generated when a request to the peripheral
(the ACD) fails.

Syntax

C++:void OnControlFailureConf(Arguments& args)
COM: void OnControlFailureConf (IArguments * args)
VB: session_OnControlFailureConf (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

UniqueObjectID STRING An object ID that uniquely identifies
the call object.

Keyword Type Description

PeripheralID INT Peripheral ID.

FailureCode SHORT Code ID.

PeripheralError
Code

INT Peripheral-specific error data, if
available. Zero otherwise.

AgentID STRING Agent ID that represents a specific client.

UniqueObjectID STRING An object ID that uniquely identifies the
call object.
6-67
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnHoldCallConf
The OnHoldCallConf event is fired to the client to indicate that a Hold request
was received by the CTIServer.

Syntax

C++: void OnHoldCallConf (Arguments & args);
COM: HRESULT OnHoldCallConf ([in] IArguments * args);
VB: Session_ OnHoldCallConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

OnMakePredictiveCallConf
Not supported.

MessageType INT Contains the CTI OS Command Request
ID that failed to execute. The message
types that can be included in this
parameter are those to used to control
Call, Agent State and Supervisor actions.
Refer to Appendix A, “CTI OS Keywords
and Enumerated Types” for a complete
list

ErrorMessage STRING String text containing the description of
the failure.

Keyword Type Description

UniqueObjectID STRING An object ID that uniquely identifies
the call object.
6-68
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnReconnectCallConf
The OnReconnectCallConf event is fired to the client to indicate that a Reconnect
request was received by the CTIServer.

Syntax

C++: void OnReconnectCallConf (Arguments & args);
COM:HRESULT OnReconnectCallConf ([in] IArguments * args);
VB:Session_ OnReconnectCallConf (ByVal args as
CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

OnReleaseCallConf
Not supported.

OnRetrieveCallConf
The OnRetrieveCallConf event is fired to the client to indicate that a RetrieveCall
request was received by the CTIServer.

Syntax

C++: void OnRetrieveCallConf (Arguments & args);
COM:HRESULT OnRetrieveCallConf ([in] IArguments * args);

Keyword Type Description

UniqueObjectID STRING An object ID that uniquely identifies
the call object.
6-69
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
VB: Session_ OnRetrieveCallConf (ByVal args as
CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

OnSendDTMFConf
The OnSendDTMFConf event is fired to the client to indicate that a SendDTMF
request was received by the CTIServer.

Syntax

C++: void OnSendDTMFConf (Arguments & args);
COM: HRESULT OnSendDTMFConf ([in] IArguments * args);
VB: Session_ OnSendDTMFConf (ByVal args as CTIOSCLIENTLIB.IArguments)

Parameters

args

Not used; reserved for future use.

OnSnapshotCallConf
The OnSnapshotCallConf event is generated when a SnapshotCall request for a
specific call is successful. It will contain all the information known about the
specific connection at that point in time.

Keyword Type Description

UniqueObjectID STRING An object ID that uniquely identifies
the call object.
6-70
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
Syntax

C++: void OnSnapshotCallConf(Arguments& args)
COM: void OnSnapshotCallConf (IArguments * args)
VB: session_OnSnapshotCallConf (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

PeripheralID INT The ICM PeripheralID of the ACD
where the call activity occurred.

CallType SHORT The general classification of the call
type.

UniqueObjectID STRING An object ID that uniquely identifies
the call object.

RouterCallKeyDay INT Together with the
RouterCallKeyCallID field forms the
unique 64-bit key for locating this
call’s records in the ICM database.
Only provided for Post-routed and
Translation-routed calls.

RouterCallKeyCallID INT The call key created by the ICM. The
ICM resets this counter at midnight.

NumNamedVariables SHORT Number of Named variables.

NumNamedArrays SHORT Number of Named Arrays.

NumCallDevices SHORT Number of devices associated with
the call.

CalledDeviceID STRING The device identifier of the called
device.

ConnectionCallID UINT The Call ID value assigned to this
call by the peripheral or the ICM.
6-71
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
CallStatus SHORT The current status of the call.

The following fields appear if they have information in them.

ANI STRING The calling line ID of the caller.

UserToUserInfo STRING The ISDN user-to-user information
element associated with the call.

DNIS STRING The DNIS provided with the call.

DialedNumber STRING The number dialed.

CallerEnteredDigits STRING The digits entered by the caller in
response to IVR prompting.

CallWrapupData STRING Call-related wrap-up data.

CallVariable1
(Optional)

STRING Call-related variable data.

… …

CallVariable10
(Optional)

STRING Call-related variable data.

CustomerPhone
Number

STRING The customer phone number
associated with the call.

CustomerAccount
Number

STRING The customer account number
associated with the call.

Keyword Type Description
6-72
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
If the MinimizeEventArgs registry entry is set to 0, the SnapshotCallConf event
contains the following additional fields.

ECC ARGUMENTS Arguments array that contains all of
the Expanded Call Context variables
in use; for example:

user.ArrayVariable[0]
user.ArrayVariable[1]
...
user.ArrayVariable[n]
user.ScalarVariable

CTIClients (Optional) ARGUMENTS Arguments array that contains the
information about the number of
clients that are using the call object;
for example:

CTIClient[1]

CTIClientSignature
CTIClientTimestamp

Keyword Type Description

Keyword Type Description

ICMEnterpriseUnique
ID

STRING This string is a globally unique key
for this contact, which corresponds to
the ICM 64 bit key. This parameter
can be used to match this contact to a
follow-on call event.

CallConnectionCallID
(optional)

UINT The CallID value assigned to the call.

CallConnectionDevice
ID Type (optional)

SHORT Indicates the type of the connection
identifier supplied in the following
CallConnectionDeviceID floating
field. This field always immediately
follows the corresponding
CallConnectionCallID field.
6-73
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ICallEvents Interface
OnTransferCallConf
The OnTransferCallConf event is fired to the client to indicate that a TransferCall
or SingleStepTransferCall request was received by the CTIServer.

Syntax

C++: void OnTransferCallConf (Arguments & args);
COM: HRESULT OnTransferCallConf ([in] IArguments * args);
VB: Session_ OnTransferCallConf (ByVal args as
CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following field.

CallConnectionDevice
ID (optional)

STRING The identifier of the call connection.
This field always immediately
follows the corresponding
CallConnectionDeviceIDType field.

CallDeviceConnection
State

SHORT The active state of the call. TThis
field always immediately follows the
corresponding CallConnection
DeviceID field.

CallDeviceType SHORT Indicates the type of the device
identifier supplied in the
CallDeviceID field.

Keyword Type Description

Keyword Type Description

UniqueObjectID STRING An object ID that uniquely identifies
the call object.
6-74
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
IAgentEvents Interface
The Agent object fires events on the IAgentEvents interface. The following
events are published to subscribers of the IAgentEvents interface.

OnAgentDeskSettingsConf
The OnAgentDeskSettingsConf event confirms successful completion of the
request and provides the query response.

Syntax

C++:void OnAgentDeskSettings(Arguments& args)
COM:void OnAgentDeskSettings (IArguments * args)
VB: session_OnAgentDeskSettings (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

InvokeID UINT Set to the same value as the InvokeID from the
corresponding request message.

PeripheralID UINT The ICM PeripheralID of the ACD where the
device is located.

DeskSettingsMask UINT A bitwise combination of the Boolean desk
setting Masks listed in Table 6-1.

WrapupData
IncomingMode

UINT Indicates whether the agent is allowed or required
to enter wrap-up data after an inbound call: 0 =
Required, 1 = Optional, 2 = Not allowed, 3 =
Required With WrapupData.

WrapupData
OutgoingMode

UINT Indicates whether the agent is allowed or required
to enter wrap-up data after an outbound call: 0 =
Required, 1 = Optional, 2 = Not allowed.
6-75
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
LogoutNon
ActivityTime

UINT Number of seconds on non-activity at the desktop
after which the ICM software automatically logs
out the agent

QualityRecording
Rate

UINT Indicates how frequently calls to the agent are
recorded.

RingNoAnswer
Time

UINT Number of seconds a call may ring at the agent’s
station before being redirected.

SilentMonitor
WarningMessage

UINT Set when a warning message box will prompt on
agent desktop when silent monitor starts.

SilentMonitor
AudibleIndication

UINT Set for an audio click at beginning of the silent
monitor

SupervisorAssist
CallMethod

UINT Set for IPCC PIM will create a blind conference
call for supervisor assist request; otherwise will
create consultative call

EmergencyCall
Method

UINT Set for IPCC PIM will create a blind conference
call for emergency call request; otherwise create
a consultative call .

AutoRecordOn
Emergency

UINT Set for automatically record when emergency call
request.

RecordingMode UINT Set for the recording request go through Call
Manager/PIM.

WorkModeTimer UINT Auto Wrap-up time out

RingNoAnswer
DN

UINT The dialed number identifier for new re-route
destination in the case of ring no answer

Table 6-1 DeskSettingsMasks Values

Mask Name Description Numeric Value

DESK_AVAIL_AFTER_
INCOMING_MASK

Set for automatically consider the
agent available after handling an
incoming call

0x00000001

DESK_AVAIL_AFTER_
OUTGOING_MASK

Set for automatically consider the
agent available after handling an
outbound call.

0x00000002
6-76
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
DESK_AUTO_
ANSWER_ENABLED_
MASK

Set when calls to the agent are
automatically answered.

0x00000004

DESK_IDLE_REASON_
REQUIRED_MASK

Set when the agent must enter a
reason before entering the Idle
state.

0x00000008

DESK_LOGOUT_
REASON_REQUIRED_
MASK

Set when the agent must enter a
reason before logging out.

0x00000010

DESK_SUPERVISOR_
CALLS_ALLOWED_MA
SK

Set when the agent can initiate
supervisor assisted calls.

0x00000020

DESK_AGENT_TO_
AGENT_CALLS_
ALLOWED

Set when calls to other agents are
allowed.

0x00000040

DESK_OUTBOUND_AC
CESS_INTERNATIONA
L_MASK

Set when the agent can initiate
international calls.

0x00000080

DESK_OUTBOUND_AC
CESS_PUBLIC_NET_M
ASK

Set when the agent can initiate
calls through the public network.

0x00000100

DESK_OUTBOUND_AC
CESS_PRIVATE_NET_
MASK

Set when the agent can initiate
calls through the private network.

0x00000200

DESK_OUTBOUND_AC
CESS_OPERATOR_ASSI
STED_MASK

Set when the agent can initiate
operator assisted calls.

0x00000400

DESK_OUTBOUND_AC
CESS_PBX_MASK

Set when the agent can initiate
outbound PBX calls.

0x00000800

Table 6-1 DeskSettingsMasks Values

Mask Name Description Numeric Value
6-77
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
OnAgentInfoEvent
The OnAgentInfoEvent event is generated as a response to a query to the Agent
Name Lookup Service and carries the agent’s name. This query is generated by the
CTI OS server when it is configured to do agent name lookup. The
OnAgentInfoEvent event is sent to the client if the server has obtained the
information.

Syntax

C++:void OnAgentInfoEvent(Arguments& args)
COM:void OnAgentInfoEvent (IArguments * args)
VB: session_OnAgentInfoEvent (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

DESK_NON_ACD_CAL
LS_ALLOWED_MASK

Set when the agent can place or
handle non-ACD calls.

0x00001000

DESK_AGENT_CAN_SE
LECT_GROUP_MASK

Set when the agent can select
which groups they are logged in
to.

0x00002000

Table 6-1 DeskSettingsMasks Values

Mask Name Description Numeric Value

Keyword Type Description

UniqueObjectID STRING A unique object ID for the agent object

AgentLastName STRING Agent’s last name

AgentFirstName STRING Agent’s first name.
6-78
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
OnAgentStateChange
The OnAgentStateChange event is generated when the agent state at the ACD
changes. This may be as a response to a Login, Logout or SetAgentState request.

Syntax

C++:void OnAgentStateChange(Arguments& args)
COM: void OnAgentStateChange (IArguments * args)
VB: session_OnAgentStateChange (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

PeripheralID INT The ICM PeripheralID of the ACD where the
agent state change occurred.

PeripheralType SHORT The type of the peripheral.

AgentState SHORT One of the values in Table 6-2 representing
the current overall state of the associated
agent.

SkillGroupNumber INT The number of the agent SkillGroup affected
by the state change, as known to the
peripheral. May contain the special value
NULL_SKILL_GROUP when not applicable
or not available.

SkillGroupID INT The ICM SkillGroupID of the agent
SkillGroup affected by the state change. May
contain the special value NULL_SKILL_
GROUP when not applicable or not available.

StateDuration INT The number of seconds since the agent
entered this state (typically 0).
6-79
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
SkillGroupPriority SHORT The priority of the skill group, or 0 when skill
group priority is not applicable or not
available.

EventReasonCode SHORT A peripheral-specific code indicating the
reason for the state change.

SkillGroupState SHORT Values representing the current state of the
associated agent with respect to the indicated
Agent Skill Group.

AgentID STRING The agent’s ACD login ID.

AgentExtension STRING The agent’s ACD teleset extension.

CTIClientSignature
(Optional)

STRING The Client Signature of the CTI Client that is
associated with this agent.

Enablement Mask Contains the bit-mask that specifies what
buttons can be enabled or disabled when the
agent is on this state.

UniqueObjectID STRING A unique object ID for the agent object.

AgentInstrument STRING The agent’s ACD instrument number.

Table 6-2 AgentState Values

enum Value Description
Numeric
Value

eLogin The agent has logged on to the ACD. It
does not necessarily indicate that the agent
is ready to accept calls.

0

eLogout The agent has logged out of the ACD and
cannot accept any additional calls.

1

eNotReady The agent is unavailable for any call work. 2

eAvailable The agent is ready to accept a call. 3

eTalking The agent is currently talking on a call
(inbound, outbound, or inside).

4

Keyword Type Description
6-80
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
Note Not all switches support all the states listed in Table 6-2, and no assumptions
should be made about which states are supported on a particular switch without
verification.

OnAgentStatistics
The OnAgentStatistics event is fired to the client to indicate that a request to
enable agent statistics (via the EnableAgentStatistics method) was received by the
CTIServer. The arrival of events event is determined by the configuration on the
server.

The table under Parameters details all the agent statistics that could be received.
To optimize bandwidth, the default configuration on the server is set to minimize
the agent statistics sent. Only the statistics that the Agent Statistics grid is

eWorkNotReady The agent is performing after call work,
but will not be ready to receive a call when
completed.

5

eWorkReady The agent is performing after call work,
and will be ready to receive a call when
completed.

6

eBusyOther The agent is busy performing a task
associated with another active SkillGroup.

7

eReserved The agent is reserved for a call that will
arrive at the ACD shortly.

8

eUnknown The agent state is currently unknown. 9

eHold The agent currently has all calls on hold. 10

Table 6-2 AgentState Values

enum Value Description
Numeric
Value
6-81
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
configured for are sent to the client. Refer to the CTI OS System Manager’s Guide
for Cisco ICM/IPCC Enterprise & Hosted Editions for details on how to
configure the agent statistics grid and minimize agent statistics.

Syntax

C++: void OnAgentStatistics (Arguments & args);
COM: HRESULT OnAgentStatistics ([in] IArguments * args);
VB: Session_ OnAgentStatistics (ByVal args as
CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

The OnAgentStatistics event will contain all the agent statistics fields necessary
to display the statistics configured on the CTI OS server.

OnChatMessage
The OnChatMessage event is generated when an asynchronous text message from
another user (agent) is received.

Keyword Description Type

PeripheralID The ICM PeripheralID of the ACD
where the agent is located.

INT

AgentExtension
(required)

The agent’s ACD teleset extension. STRING

AgentID (required) The agent’s ACD login ID. STRING

AgentInstrument
(required)

The agent’s ACD instrument
number.

STRING
6-82
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
Syntax

C++:void OnChatMessage(Arguments& args)
COM:void OnChatMessage (IArguments * args)
VB: session_OnChatMessage (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

OnControlFailureConf
The OnControlFailureConf event is generated when the previously issued request,
identified by the InvokeID field failed. It is sent in place of the corresponding
confirmation message for that request.

Syntax

C++:void OnControlFailureConf(Arguments& args)
COM:void OnControlFailureConf (IArguments * args)
VB: session_OnControlFailureConf (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

Distribution STRING Currently the only supported value is “agent”.

AgentID STRING The AgentID of the message target.

Target STRING The AgentID of the message target.

Message STRING The text message provided by the sender.

Source STRING The AgentID of the message sender.
6-83
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
Keyword Type Description

InvokeID INT InvokeID of the request that failed

FailureCode SHORT A value specifying the reason that the request
failed. See Table 6-3 for a list of the Control
Failure Codes.

PeripheralError
Code

INT Peripheral-specific error data, if available. Zero
otherwise.

AgentID STRING Agent ID that represents a specific client.

UniqueObjectID STRING An object ID that uniquely identifies the call
object.

MessageType INT Contains the CTI OS Command Request ID that
failed to execute. The message types that can be
included in this parameter are those to used to
control Call, Agent State and Supervisor actions.
Refer to Appendix A, “CTI OS Keywords and
Enumerated Types” for a complete list.

ErrorMessage STRING String text containing the description of the
failure.

Table 6-3 Control Failure Codes

Status Code Description Value

E_CTI_NO_ERROR No error occurred. 0

E_CTI_INVALID_
VERSION

The CTI Server does not support the
protocol version number requested by the
CTI client.

1

E_CTI_INVALID_
MESSAGE_ TYPE

A message with an invalid message type
field was received.

2

E_CTI_INVALID_
FIELD_TAG

A message with an invalid floating field tag
was received.

3

E_CTI_SESSION_
NOT_OPEN

No session is currently open on the
connection.

4

6-84
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
E_CTI_SESSION_
ALREADY_ OPEN

A session is already open on the
connection.

5

E_CTI_REQUIRED_
DATA_ MISSING

The request did not include one or more
floating items that are requir ed.

6

E_CTI_INVALID_
PERIPHERAL_ID

A message with an invalid PeripheralID
value was received.

7

E_CTI_INVALID_
AGENT_ DATA

The provided agent data item(s) are invalid. 8

E_CTI_AGENT_NOT_
LOGGED_ON

The indicated agent is not currently logged
on.

9

E_CTI_DEVICE_IN_
USE

The indicated agent teleset is already
associated with a different CTI client.

10

E_CTI_NEW_
SESSION_ OPENED

This session is being terminated due to a
new session open request from the client.

11

E_CTI_FUNCTION_
NOT_ AVAILABLE

A request message was received for a
function or service that was not granted to
the client.

12

E_CTI_INVALID_
CALLID

A request message was received with an
invalid CallID value.

13

E_CTI_PROTECTED_
VARIABLE

The CTI client may not update the
requested variable.

14

E_CTI_CTI_SERVER_
OFFLINE

The CTI Server is not able to function
normally. The CTI client should close the
session upon receipt of this error.

15

E_CTI_TIMEOUT The CTI Server failed to respond to a
request message within the time-out period,
or no messages have been received from the
CTI client within the IdleTimeout period.

16

E_CTI_UNSPECIFIED_
FAILURE

An unspecified error occurred. 17

Table 6-3 Control Failure Codes

Status Code Description Value
6-85
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
E_CTI_INVALID_
TIMEOUT

The IdleTimeout field contains a value that
is less than 20 seconds (4 times the
minimum heartbeat interval of 5 seconds).

18

E_CTI_INVALID_
SERVICE_MASK

The ServicesRequested field has unused
bits set. All unused bit positions must be
zero.

19

E_CTI_INVALID_
CALL_MSG_MASK

The CallMsgMask field has unused bits set.
All unused bit positions must be zero.

20

E_CTI_INVALID_
AGENT_ STATE_
MASK

The AgentStateMask field has unused bits
set. All unused bit positions must be zero.

21

E_CTI_INVALID_
RESERVED_ FIELD

A Reserved field has a non-zero value. 22

E_CTI_INVALID_
FIELD_ LENGTH

A floating field exceeds the allowable
length for that field type.

23

E_CTI_INVALID_
DIGITS

A STRING field contains characters that
are not digits (“0” through “9”).

24

E_CTI_BAD_
MESSAGE_ FORMAT

The message is improperly constructed.
This may be caused by omitted or
incorrectly sized fixed message fields.

25

E_CTI_INVALID_
TAG_FOR_MSG_
TYPE

A floating field tag is present that specifies
a field that does not belong in this message
type.

26

E_CTI_INVALID_
DEVICE_ID_ TYPE

A DeviceIDType field contains an invalid.
value.

27

E_CTI_INVALID_
LCL_CONN_ STATE

A LocalConnectionState field contains an
invalid value.

28

E_CTI_INVALID_
EVENT_ CAUSE

An EventCause field contains an invalid
value.

29

E_CTI_INVALID_
NUM_ PARTIES

The NumParties field contains a value that
exceeds the maximum (16).

30

Table 6-3 Control Failure Codes

Status Code Description Value
6-86
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
E_CTI_INVALID_
SYS_ EVENT_ID

The SystemEventID field contains an
invalid value.

31

E_CTI_
INCONSISTENT_
AGENT_DATA

The provided agent extension, agent id,
and/or agent instrument values are
inconsistent with each other.

32

E_CTI_INVALID_
CONNECTION_ID_
TYPE

A ConnectionDeviceIDType field contains
an invalid value.

33

E_CTI_INVALID_
CALL_TYPE

The CallType field contains an invalid
value.

34

E_CTI_NOT_CALL_
PARTY

A CallDataUpdate or Release Call request
specified a call that the client is not a party
to.

35

E_CTI_INVALID_
PASSWORD

The ClientID and Client Password provided
in an OPEN_REQ message is incorrect.

36

E_CTI_CLIENT_
DISCONNECTED

The client TCP/IP connection was
disconnected without a CLOSE_REQ.

37

E_CTI_INVALID_
OBJECT_ STATE

An invalid object state value was provided. 38

E_CTI_INVALID_
NUM_
SKILL_GROUPS

An invalid NumSkillGroups value was
provided.

39

E_CTI_INVALID_
NUM_LINES

An invalid NumLines value was provided. 40

E_CTI_INVALID_
LINE_TYPE

An invalid LineType value was provided. 41

E_CTI_INVALID_
ALLOCATION_STATE

An invalid AllocationState value was
provided.

42

E_CTI_INVALID_
ANSWERING_
MACHINE

An invalid AnsweringMachine value was
provided.

43

Table 6-3 Control Failure Codes

Status Code Description Value
6-87
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
E_CTI_INVALID_
CALL_MANNER_
TYPE

An invalid CallMannerType value was
provided.

44

E_CTI_INVALID_
CALL_PLACEMENT_
TYPE

An invalid CallPlacementType value was
provided.

45

E_CTI_INVALID_
CONSULT_ TYPE

An invalid ConsultType value was
provided.

46

E_CTI_INVALID_
FACILITY_ TYPE

An invalid FacilityType value was
provided.

47

E_CTI_INVALID_
MSG_TYPE_ FOR_
VERSION

The provided MessageType is invalid for
the opened protocol version.

48

E_CTI_INVALID_
TAG_FOR_ VERSION

A floating field tag value is invalid for the
opened protocol version.

49

E_CTI_INVALID_
AGENT_WORK_
MODE

An invalid AgentWorkMode value was
provided.

50

E_CTI_INVALID_
CALL_OPTION

An invalid call option value was provided. 51

E_CTI_INVALID_
DESTINATION_
COUNTRY

An invalid destination country value was
provided.

52

E_CTI_INVALID_
ANSWER_DETECT_
MODE

An invalid answer detect mode value was
provided.

53

E_CTI_MUTUALLY_
EXCLUS_DEVICEID_
TYPES

A peripheral monitor request may not
specify both a call and a device.

54

E_CTI_INVALID_
MONITORID

An invalid monitorID value was provided. 55

Table 6-3 Control Failure Codes

Status Code Description Value
6-88
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
E_CTI_SESSION_
MONITOR_
ALREADY_EXISTS

A requested session monitor was already
created.

56

E_CTI_SESSION_
MONITOR_IS_
CLIENTS

A client may not monitor its own session. 57

E_CTI_INVALID_
CALL_CONTROL_
MASK

An invalid call control mask value was
provided.

58

E_CTI_INVALID_
FEATURE_MASK

An invalid feature mask value was
provided.

59

E_CTI_INVALID_
TRANSFER_
CONFERENCE_
SETUP_MASK

An invalid transfer conference setup mask
value was provided.

60

E_CTI_INVALID_
ARRAY_INDEX

An invalid named array index value was
provided.

61

E_CTI_INVALID_
CHARACTER

An invalid character value was provided. 62

E_CTI_CLIENT_NOT_
FOUND

There is no open session with a matching
ClientID.

63

E_CTI_SUPERVISOR_
NOT_FOUND

The agent’s supervisor is unknown or does
not have an open CTI session.

64

E_CTI_TEAM_NOT_
FOUND

The agent is not a member of an agent team. 65

E_CTI_NO_CALL_
ACTIVE

The specified agent does not have an active
call.

66

E_CTI_NAMED_
VARIABLE_NOT_
CONFIGURED

The specified named variable is not
configured in the ICM database.

67

Table 6-3 Control Failure Codes

Status Code Description Value
6-89
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
E_CTI_NAMED_
ARRAY_NOT_
CONFIGURED

The specified named array is not configured
in the ICM database.

68

E_CTI_INVALID_
CALL_VARIABLE_
MASK

The specified call variable mask in not
valid.

69

E_CTI_ELEMENT_
NOT_FOUND

An internal error occurred manipulating a
named variable or named array element.

70

E_CTI_INVALID_
DISTRIBUTION_TYPE

The specified distribution type is invalid. 71

E_CTI_INVALID_
SKILL_GROUP

The specified skill group is invalid. 72

E_CTI_TOO_MUCH_
DATA

The total combined size of named variables
and named arrays may not exceed the limit
of 2000 bytes.

73

E_CTI_VALUE_TOO_
LONG

The value of the specified named variable
or named array element exceeds the
maximum permissible length.

74

E_CTI_SCALAR_
FUNCTION_ON_
ARRAY

A NamedArray was specified with a
NamedVariable tag.

75

E_CTI_ARRAY_
FUNCTION_ON_
SCALAR

A NamedVariable was specified with a
NamedArray tag.

76

E_CTI_INVALID_
NUM_NAMED_
VARIABLES

The value in the NumNamedVariables field
is different than the number of
NamedVariable floating fields in the
message.

77

E_CTI_INVALID_
NUM_NAMED_
ARRAYS

The value in the NumNamedArrays field is
different than the number of NamedArray
floating fields in the message.

78

Table 6-3 Control Failure Codes

Status Code Description Value
6-90
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
OnEmergencyCall
The OnEmergencyCall event indicates that a CTI client (with Supervisory
capabilities) is handling the indicated call as an emergency call. This event only
applies to ACDs with Supervisor capabilities.

Syntax

C++: void OnEmergencyCall(Arguments& args)
COM:void OnEmergencyCall (IArguments * args)
VB: session_OnEmergencyCall (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

PeripheralID INT The ICM PeripheralID of the ACD where
the call is located.

Connection CallID INT The Call ID value assigned to the call by
the peripheral or the ICM.

ConnectionDevice
IDType

SHORT Indicates the type of the connection
identifier supplied in the
ConnectionDeviceID floating field.

SessionID INT The CTI client SessionID of the CTI
client making the notification.

Connection
DeviceID

INT The identifier of the connection between
the call and the agent’s device.

ClientID (required) STRING The ClientID of the client making the
notification.

ClientAddress
(Required)

STRING The IP address of the client making the
notification.

AgentExtension
(Required)

STRING The Agent’s teleset extension.
6-91
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
Remarks

Supported for use with IPCC only.

OnLogoutFailed
The OnLogoutFailed ia always generated before (or along with) an
OnControlFailureConf event and is identical to it but is generated only when a
Logout request fails.

Syntax

C++:void OnLogoutFailed (Arguments& args)
COM:void OnLogoutFailed (IArguments * args)
VB: session_OnLogoutFailed (ByVal args As CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

AgentID (required) STRING The Agent’s ACD login ID.

AgentInstrument
(required)

STRING The Agent’s ACD instrument number.

Keyword Type Description

Keyword Type Description

InvokeID INT InvokeID of the request that failed

FailureCode SHORT A value specifying the reason that the
request failed. See Table 6-3 for a list of
the Control Failure Codes.

Peripheral
ErrorCode

INT Peripheral-specific error data, if available.
Zero otherwise.
6-92
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
OnMakeCallConf
The OnMakeCallConf event confirms the successful completion of the MakeCall
request. It conveys the information detailed in the table under Parameters.

Syntax

C++: int OnMakeCallConf (Arguments & args);
COM: HRESULT OnMakeCallConf ([in] IArguments * args);
VB: Session_ OnMakeCallConf (ByVal args as CTIOSCLIENTLIB.IArguments)
Java: void OnMakeCallConf (Arguments args);

Parameters

args

Arguments array containing the following fields.

Keyword Description Type

NewConnectionCallID The Call ID value assigned to the
call by the peripheral or the ICM.

UINT

NewConnectionDevice
IDType

Indicates the type of the connection
identifier supplied in the New
ConnectionDeviceID floating field.

SHORT

LineHandle This field identifies the teleset line
used, if known. Otherwise this field
is set to 0xffff.

SHORT

LineType Indicates the type of the teleset line
given in the LineHandle field.

SHORT

NewConnectionDeviceID
(required)

The identifier of the connection
between the call and the device.

STRING
6-93
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
OnNewAgentTeamMember
The OnNewAgentTeamMember event informs the supervisor about a new agent
team member. The event is typically received in response to a
RequestAgentTeamList request from the supervisor object. It is also received
when CTI OS Server receives an AGENT_TEAM_CONFIG_EVENT indicating
a change in agent team configuration (add/remove).

Syntax

C++: void OnNewAgentTeamMember (Arguments& args)
COM:void OnNewAgentTeamMember (IArguments * args)
VB: session_OnNewAgentTeamMember (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array that can contain the following fields. Not all fields are
always returned. Skillgroup and AgentInstrument are not returned if the agent
is not logged in.

Keyword Type Description

PeripheralID STRING The ICM PeripheralID of the agent’s
ACD .

UniqueObjectID STRING Unique object ID of the agent object for
this agent.

AgentState SHORT One of the values in Table 6-2
representing the current state of the
associated agent.

NumSkillGroups INT The number of skill groups that the
agent is currently associated with, up to
a maximum of 20.

AgentID STRING Agent’s ACD login.

AgentExtension STRING Agent’s ACD teleset extension.
6-94
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
AgentInstrument STRING Agent’s ACD instrument number.

AgentLastName STRING Agent’s last name.

AgentFirstName STRING Agent’s first name.

AgentName STRING Agent’s full name.

AgentAvailability
Status

SHORT The current status of the agent’s
availability to take a call.

EnablementMask INT Contains the bit-mask that specifies
what buttons can be enabled or disabled
when the agent is on the state specified
in the AgentState field.

SupervisorID STRING The ID of the agent’s supervisor.

AgentFlags INT Used to describe the agent carried in
this event. The possible values for this
field as well as their meanings are as
follows.

 • TeamMemberFlags.AGENT_FLAG
_REGULAR_AGENT - Value is 0.
The agent is a regular agent

 • TeamMemberFlags.AGENT_FLAG
_PRIMARY_SUPERVISOR -
Value is 1. The agent is a primary
supervisor

 • TeamMemberFlags.AGENT_FLAG
_TEMPORARY_AGENT - Value
is 2. The agent is a temporary
agent

 • TeamMemberFlags.AGENT_FLAG
_SUPERVISOR - Value is 4. The
agent is a supervisor
6-95
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
OnPostLogout
The OnPostLogout event is generated after the agent has logged out. Arrival of
this event guarantees that the agent state event signalling the agent's transition to
logout state has been received and handled by all interested event listeners.

Syntax

C++:void OnPostLogout(Arguments& args)
COM:void OnPostLogout (IArguments * args)
VB: session_OnPostLogout (ByVal args As CtiosCLIENTLib.IArguments)

Skillgroup[1} ARGUMENTS Arguments array containing
information about the agent’s first
skillgroup. The array contains the
following arguments.

 • SkillGroupNumber

 • SkillGroupID

 • StateDuration

 • SkillGroupPriority

Skillgroup[n] ARGUMENTS Arguments array containing
information about the agent’s nth
skillgroup.

ConfigOperation USHORT used to describe a change to the team.
The possible values for this field as
well as their meanings are as follows.

 • TeamMemberFlags.CONFIG_OPER
ATION_ADD_AGENT - Value is
1 - The agent belongs to the team

 • TeamMemberFlags.CONFIG_OPER
ATION_REMOVE_AGENT -
Value is 2 - The agent no longer
belongs to the team
6-96
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
Parameters

args

Arguments array containing the following fields.

Keyword Type Description

PeripheralID INT The ICM PeripheralID of the ACD where
the agent state change occurred.

PeripheralType SHORT The type of the peripheral.

AgentState SHORT One of the values in Table 6-2
representing the current overall state of
the associated agent.

SkillGroupNumber INT The number of the agent SkillGroup
affected by the state change, as known to
the peripheral. May contain the special
value NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupID INT The ICM SkillGroupID of the agent
SkillGroup affected by the state change.
May contain the special value
NULL_SKILL_ GROUP when not
applicable or not available.

StateDuration INT The number of seconds since the agent
entered this state (typically 0).

SkillGroupPriority SHORT The priority of the skill group, or 0 when
skill group priority is not applicable or
not available.

EventReasonCode SHORT A peripheral-specific code indicating the
reason for the state change.

SkillGroupState SHORT Values representing the current state of
the associated agent with respect to the
indicated Agent Skill Group.

AgentID STRING The agent’s ACD login ID.

AgentExtension STRING The agent’s ACD teleset extension.
6-97
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
Remarks

When PG failover occurs, it is possible that the client application will receive an
OnPostLogout event with an EventReasonCode of
CTIOS_IPCC_FORCED_LOGOUT_REASON_CODE. For example, this may
happen on an IPCC system after reconnecting to a different server during a failover,
because there is a race condition of the PG logging the agent out and the client
reconnecting to the other server before it happens. If this happens, the client
application should not disconnect from CTI OS Server.

OnPreLogout
The OnPreLogout event just before the agent is logged out. It allows for any
cleanup or logic that needs to be done before logout is completed.

Syntax

C++: void OnPreLogout(Arguments& args)
COM:void OnPreLogout (IArguments * args)
VB: session_OnPreLogout (ByVal args As CtiosCLIENTLib.IArguments)

CTIClientSignature
(Optional)

STRING The Client Signature of the CTI Client
that is associated with this agent.

EnablementMask INT Contains the bit-mask that specifies what
buttons can be enabled or disabled when
the agent is on this state.

UniqueObjectID STRING A unique object ID for the agent object.

AgentInstrument STRING The agent’s ACD instrument number.

Keyword Type Description
6-98
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
Parameters

args

Arguments array containing the following fields.

Keyword Type Description

PeripheralID INT The ICM PeripheralID of the ACD where
the agent state change occurred.

PeripheralType SHORT The type of the peripheral.

AgentState SHORT One of the values in Table 6-2 representing
the current overall state of the associated
agent.

SkillGroupNumber INT The number of the agent SkillGroup
affected by the state change, as known to
the peripheral. May contain the special
value NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupID INT The ICM SkillGroupID of the agent
SkillGroup affected by the state change.
May contain the special value
NULL_SKILL_GROUP when not
applicable or not available.

StateDuration INT The number of seconds since the agent
entered this state (typically 0).

SkillGroupPriority SHORT The priority of the skill group, or 0 when
skill group priority is not applicable or not
available.

EventReasonCode SHORT A peripheral-specific code indicating the
reason for the state change.

SkillGroupState SHORT Values representing the current state of the
associated agent with respect to the
indicated Agent Skill Group.

AgentID STRING The agent’s ACD login ID.

AgentExtension STRING The agent’s ACD teleset extension.
6-99
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
OnQueryAgentStateConf
The OnQueryAgentStateConf event is generated and returned by the server at
login as a response to the QueryAgentState() request. A user cannot issue this
request.

Syntax

C++:void OnQueryAgentStateConf(Arguments& args)
COM:void OnQueryAgentStateConf (IArguments * args)
VB: session_OnQueryAgentStateConf (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

CTIClientSignature
(Optional)

STRING The Client Signature of the CTI Client that
is associated with this agent.

Enablement Mask Contains the bit-mask that specifies what
buttons can be enabled or disabled when the
agent is on this state.

UniqueObjectID STRING A unique object ID for the agent object.

AgentInstrument STRING The agent’s ACD instrument number.

Keyword Type Description

Keyword Type Description

AgentID STRING Agent’s ACD login.

AgentExtension STRING Agent’s ACD teleset extension.

AgentInstrument STRING Agent’s ACD instrument number.
6-100
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
AgentState SHORT One of the values in Table 6-2
representing the current state of the
associated agent.

NumSkillGroups INT The number of skill groups that the agent
is currently associated with, up to a
maximum of 20.

SkillGroup[j] ARGUMENTS Argument array that contains Skill Group
information for the j-th element less than
NumSkillGroups. The message will
contain up to NumSkillGroups elements
of this type.

MRDID INT Media Routing Domain ID as configured
in ICM and the ARM client.

NumTasks INT The number of tasks currently assigned
to the agent – this is the number that ICM
software compares to the MaxTaskLimit
to decide if the agent is available to be
assigned additional tasks. This includes
active tasks as well as those that are
offered, paused, and in wrapup.

AgentMode SHORT The mode that the agent will be in when
the login completes. ROUTABLE = 0,
NOT ROUTABLE = 1

MaxTaskLimit INT The maximum number of tasks that the
agent can be simultaneously working on.
6-101
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
Each SkillGroup[j] field in the message contains the following information.

ICMAgentID INT The ICM Skill Target ID, a unique agent
identifier for ICM.

Agent Availability
Status

INT An agent is available to work on a task in
this Media Routing Domain if the agent
meets all of these conditions:

• The agent is routable for this Media
Routing Domain

• The agent is not in Not Ready state for
skill groups in other Media Routing
Domain

• The agent is temp routable, meaning
that the agent is not in Reserved, Active,
Work-Ready, or Work-Not Ready state
on a non-interruptible task in another
Media Routing Domain.

• The agent has not reached the maximum
task limit for this Media Routing Domain

An available agent is eligible to be
assigned a task. Who can assign a task to
the agent is determined by whether or not
the agent is Routable.

An agent is ICMAvailable in MRD X if he
is available in X and Routable with
respect to X. An agent is
ApplicationAvailable in MRD X if he is
available in X and not Routable with
respect to X. Otherwise an agent is
NotAvailable in MRD X.

NOT AVAILABLE = 0,

ICM AVAILABLE = 1,

APPLICATION AVAILABLE=2
6-102
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
OnSetAgentModeEvent
The OnSetAgentModeEvent event indicates that the client has made a successful
AgentMode connection.

Syntax

C++:void OnSetAgentModeEvent (Arguments& args)
COM: void OnSetAgentModeEvent (IArguments * args)
VB: Session_OnSetAgentModeEvent (ByVal args As
CtiosCLIENTLib.IArguments)

Keyword Type Description

SkillGroupNumber INT The number of an agent SkillGroup queue
that the call has been added to, as known
to the peripheral. May contain the special
value NULL_SKILL_GROUP when not
applicable or not available.

SkillGroupID INT The ICM SkillGroupID of the agent
SkillGroup the call is attributed to. May
contain the special value
NULL_SKILL_GROUP when not
applicable or available.

SkillGroupPriority SHORT The priority of the skill group, or 0 when
the skill group priority is not applicable
or not available.

SkillGroupState SHORT One of the values representing the current
state associated agent with respect to the
skill group.
6-103
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
Parameters

args

Arguments array containing the following fields.

OnSetAgentStateConf
The OnSetAgentStateConf confirmation message is fired to the client to indicate
that the SetAgentState request was received by the CTI Server. This confirmation
message does not indicate that the agent has changed to the desired state; rather,
the programmer should expect one or more OnAgentStateChange events to
indicate the change of state.

Keyword Type Description

PeripheralID STRING ID of the ICM Peripheral ACD
associated with the agent.

AgentID STRING The agent’s ID.

UniqueObject ID STRING The new unique object ID for the
agent object.

ClientAgent
TemporaryID

STRING Temporary ID used before server
passes the new unique object ID.

CIL ConnectionID STRING ID of the client’s connection on the
server.

StatusSystem ARGUMENTS Arguments array containing the
following elements:

 • StatusCTIServer

 • StatusCtiServerDriver

 • StatusCentralController

 • StatusPeripherals (Arguments
array with a peripheral id for
each key and a boolean true/false
value indicating if that
peripheral is online)
6-104
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
Syntax

C++:int OnSetAgentStateConf (Arguments & args);
COM: HRESULT OnSetAgentStateConf ([out] IArguments * args);
VB: Session_ OnSetAgentStateConf (ByVal args as
CTIOSCLIENTLIB.IArguments)
Java: void OnSetAgentStateConf (Arguments args);

Parameters

args

Not used; reserved for future use.

OnStartMonitoringAgent
The OnStartMonitoringAgent event is generated when a new agent is selected to
be monitored in response to a StartMonitoringAgent() request.

Syntax

C++:void OnStartMonitoringAgent (Arguments& args)
COM:void OnStartMonitoringAgent (IArguments * args)
VB: session_OnStartMonitoringAgent (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

UniqueObjectID STRING Unique object ID for the supervisor object.

AgentReference STRING String containing the Agent ID for the agent
to be monitored.

SupervisorID STRING String containing the supervisor’s AgentID

SupervisorKey STRING Supervisor’s unique object ID.
6-105
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IAgentEvents Interface
Remarks

This is a Supervisor specific event. It is supported for use with IPCC only.

OnStopMonitoringAgent
The OnStopMonitoringAgent event is generated when monitoring of an agent is
dropped in response to a StopMonitoringAgent() request.

Syntax

C++:void OnStopMonitoringAgent (Arguments& args)
COM: void OnStopMonitoringAgent (IArguments * args)
VB: session_OnStopMonitoringAgent (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

BargedInCallID STRING If the supervisor has barged in on the agent’s
call, the unique object ID of that call.

Supervisor
AgentState

STRING The supervisor’s agent state.

Keyword Type Description

UniqueObjectID STRING Unique object ID for the supervisor object.

AgentReference STRING String containing the Agent ID for the agent
to be monitored.

SupervisorID STRING String containing the supervisor’s AgentID

SupervisorKey STRING Supervisor’s unique object ID.
6-106
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISkillGroupEvents Interface
Remarks

This is a Supervisor specific event. It is supported for use with IPCC only.

OnUserMessageConf
Not supported.

ISkillGroupEvents Interface
The SkillGroup object fires events on the ISkillGroupEvents interface. The
following events are published to subscribers of the ISkillGroupEvents interface.

OnSkillGroupStatisticsUpdated
The OnSkillGroupStatisticsUpdated event is generated when skill group statistics
are reported. The update frequency of OnSkillGroupStatisticsUpdated can be
configured on the CTI OS server (see the CTI OS System Manager's Guide for Cisco
ICM/IPCC Enterprise & Hosted Editions).

Syntax

C++:void OnSkillGroupStatisticsUpdated (Arguments& args)
COM:void OnSkillGroupStatisticsUpdated (IArguments * args)
VB: skillgroup_ OnSkillGroupStatisticsUpdated (ByVal args As
CtiosCLIENTLib.IArguments)

BargedInCallID STRING If the supervisor has barged in on the agent’s
call, the unique object ID of that call.

Supervisor
AgentState

STRING The supervisor’s agent state.
6-107
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISkillGroupEvents Interface
Parameters

args

Arguments array containing the following fields.

.

The statistics event will also contain all the statistics fields listed in
Table 11-2 in a nested arguments array named STATISTICS.

OnSkillInfoEvent
Provides information about a particular skill group. This event will be sent to any
client that has enabled skill group statistics.

C++: void OnSkillInfoEvent(Arguments& args)
COM: void OnSkillInfoEvent(IArguments * args)
VB:skillgroup_OnSkillInfoEvent(ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

PeripheralID INT The ICM PeripheralID of the ACD on which the
agent resides.

SkillGroupNumber INT The number of the agent skill group as known to
the peripheral. May contain the special value
NULL_SKILL_GROUP when not available.

SkillGroupID INT The ICM SkillGroupID of the skill group. May
contain the special value
NULL_SKILL_GROUP when not available.

Keyword Type Description
6-108
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IButtonEnablementEvents
IButtonEnablementEvents
This interface allows a client application to receive events that indicate what
buttons can be enabled on the user interface, given the current agent and current
call states.

OnButtonEnablementChange
The OnButtonEnablementChange event is received by a client in agent mode
whenever CIL receives an agent or call event that carries the EnablementMask
field in its parameters. This event allows the client application to enable or disable
elements on the user interface. The fields in the event are the same as in
OnButtonEnablementChange.

C++:void OnButtonEnablementChange (Arguments& args)
COM:void OnButtonEnablementChange (IArguments * args)
VB: session_ OnButtonEnablementChange (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

SkillGroupNumber INT Skill group number

SkillGroupName STRING Skill group name associated with the
skill group number above

Keyword Type Description

EnablementMask INT Contains the bit-mask that specifies what
buttons can be enabled or disabled when
this call is the current call. See Table 6-4.
6-109
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IButtonEnablementEvents
Note Table 6-4 represents the C++/COM/VB enumerations. Enumerations for Java can
be found in the description of CtiOs_Enums.ButtonEnablement in the Javadoc. It is
strongly recommended that bits be referenced by the enumeration rather than the
actual number in the bit mask.

UniqueObjectID STRING ID of the object (e.g., agent, call) that the
event is meant for.

MessageID INT The event that triggered the button
enablement change.

Table 6-4 Table of Enablement Bits

Button Bit Mask

DISABLE_ALL 0x00400000

ENABLE_ANSWER 0X00000001

ENABLE_RELEASE 0X00000002

ENABLE_HOLD 0X00000004

ENABLE_RETRIEVE 0X00000008

ENABLE_MAKECALL 0X00000010

ENABLE_TRANSFER_INIT 0X00000020

ENABLE_TRANSFER_COMPLETE 0X00000040

ENABLE_SINGLE_STEP_TRANSFER 0X00000080

ENABLE_CONFERENCE_INIT 0X00000100

ENABLE_CONFERENCE_COMPLETE 0X00000200

ENABLE_SINGLE_STEP_
CONFERENCE

0X00000400

ENABLE_ALTERNATE 0X00000800

ENABLE_RECONNECT 0X00001000

ENABLE_WRAPUP 0X00002000

ENABLE_INSIDE_MAKECALL 0X00004000
6-110
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IButtonEnablementEvents
ENABLE_OUTSIDE_MAKECALL 0X00008000

ENABLE_SUPERVISOR_ASSIST 0X00010000

ENABLE_EMERGENCY_CALL 0X00020000

ENABLE_BAD_LINE_CALL 0X00040000

ENABLE_STATISTICS 0X00080000

ENABLE_CHAT 0X00100000

ENABLE_RECORD 0X00200000

ENABLE_LOGIN 0X01000000

ENABLE_LOGOUT 0X02000000

ENABLE_LOGOUT_WITH_REASON 0x04000000

ENABLE_READY 0X08000000

ENABLE_NOTREADY 0X10000000

ENABLE_NOTREADY_WITH_
REASON

0X20000000

ENABLE_WORKREADY 0X40000000

ENABLE_WORKNOTREADY 0x80000000

DISABLE_READY 0xF7FFFFFF

DISABLE_NOTREADY 0xCFFFFFFF

DISABLE_WORKREADY 0xBFFFFFFF

Supervisor Button Enablement Masks

ENABLE_SET_AGENT_LOGOUT 0x00000001

ENABLE_SET_AGENT_READY 0x00000002

ENABLE_SILENTMONITOR 0x00000004

ENABLE_BARGE_IN 0x00000004

ENABLE_INTERCEPT 0x00000008

ENABLE_CLEAR 0x00000010

DISABLE_SET_AGENT_LOGOUT 0xFFFFFFFE

DISABLE_SET_AGENT_READY 0xFFFFFFFD

Table 6-4 Table of Enablement Bits
6-111
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IButtonEnablementEvents
OnSupervisorButtonChange
The OnSupervisorButtonChange is received by a client in agent mode working as
supervisor whenever CIL receives a Monitored Agent, Monitored call event that
carries the SupervisorBtnEnablementMask field in its parameters. This event
allows the client application to enable or disable elements on the user interface.
The fields in the event are the same as in OnButtonEnablementChange

C++:void OnSupervisorButtonChange (Arguments& args)
COM:void OnSupervisorButtonChange (IArguments * args)
VB: session_ OnSupervisorButtonChange (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

DISABLE_SILENTMONITOR 0xFFFFFFFB

DISABLE_BARGE_IN 0xFFFFFFFB

DISABLE_INTERCEPT 0xFFFFFFF7

DISABLE_CLEAR 0xFFFFFFEF

DISABLE_SUPERVISE_CALL DISABLE_BARGE_IN,
DISABLE_INTERCEPT,
DISABLE_CLEAR,
DISABLE_SILENTMONITOR

DISABLE_SET_AGENT_STATE DISABLE_SET_AGENT_
LOGOUT, DISABLE_SET_
AGENT_READY

DISABLE_ALL_AGENT_SELECT DISABLE_SUPERVISE_CALL,
DISABLE_SET_AGENT_STATE
, DISABLE_SILENTMONITOR

Table 6-4 Table of Enablement Bits
6-112
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IMonitoredAgentEvents Interface
Remarks

Supported for use with IPCC only.

IMonitoredAgentEvents Interface

Note The events in this section are supported for use with IPCC only.

This interface fires Agent events to a supervisor for his team members.
IMonitoredAgentEvents are triggered by the supervisor sending a
StartMonitoringAllAgentTeams request (see Chapter 9, “Agent Object”). For
details on the event parameters please see the IAgentEvents interface.

The most common event being handled is the OnMonitoredAgentStateChange
event, which informs a supervisor of agent state changes of agents in the
supervisor’s team. All the parameters are the same as for regular
OnAgentStateChange events, except for an additional keyword called
CTIOS_MONITORED, which indicates that this event is for a monitored agent.

List of Monitored Agent events:

OnMonitoredAgentStateChange([in] IArguments *pIArguments);

OnMonitoredAgentInfoEvent([in] IArguments *pIArguments);

IMonitoredCallEvents Interface

Note The events in this section are supported for use with IPCC only.

Keyword Type Description

SupervisorBtn
EnablementMask

INT Contains the bit-mask that specifies
what buttons can be enabled or
disabled when this call is the current
call. See Table 6-4.
6-113
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IMonitoredCallEvents Interface
This interface fires Call events to a supervisor for one of his agent team members.
When the supervisor sends a StartMonitoringAgent request (see Chapter 9,
“Agent Object”), the supervisor will start receiving MonitoredCallEvents for this
“currently” monitored agent. Monitored call events will be received until the
supervisor sends a StopMonitoringAgent request for this agent.

The IMonitoredCallEvents interface includes OnMonitoredCallBegin,
OnMonitoredCallEnd, and OnMonitoredCallDataUpdate as well as other call
events (see list below). These events are described in detail for the
ICallEventsInterface. The only difference is that the arguments array contains an
additional keyword call CTIOS_MONITORED, indicating that this event is for a
monitored call.

List of Monitored Call events:

 OnMonitoredCallBegin([in] IArguments *pIArguments);

 OnMonitoredCallEnd([in] IArguments *pIArguments);

 OnMonitoredCallDataUpdate([in] IArguments *pIArguments);

 OnMonitoredCallDelivered([in] IArguments *pIArguments);

 OnMonitoredCallEstablished([in] IArguments *pIArguments);

 OnMonitoredCallHeld([in] IArguments *pIArguments);

 OnMonitoredCallRetrieved([in] IArguments *pIArguments);

 OnMonitoredCallCleared([in] IArguments *pIArguments);

 OnMonitoredCallConnectionCleared([in] IArguments *pIArguments);

 MonitoredCallReachedNetworkEvent([in] IArguments *pIArguments);

 OnMonitoredCallOriginated([in] IArguments *pIArguments);

 OnMonitoredCallFailed([in] IArguments *pIArguments);

 OnMonitoredCallTransferred([in] IArguments *pIArguments);

 OnMonitoredCallConferenced([in] IArguments *pIArguments);

 OnMonitoredCallDiverted([in] IArguments *pIArguments);

 OnMonitoredTranslationRoute([in] IArguments *pIArguments);

 OnMonitoredCallAgentPrecallEvent([in] IArguments *pIArguments);

 OnMonitoredCallAgentPrecallAbortEvent([in] IArguments *pIArguments);

 MonitoredCallServiceInitiatedEvent([in] IArguments *pIArguments);
6-114
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISilentMonitorEvents
 MonitoredCallQueuedEvent([in] IArguments *pIArguments);

 MonitoredCallDequeuedEvent([in] IArguments *pIArguments);

ISilentMonitorEvents
The silent monitor manager object fires events on the ISilentMonitorEvents
interface. The following events are published to subscribers of the
ISilentMonitorEvents interface.

Note The events in this section are supported for use with IPCC only.

OnCallRTPStarted
The OnCallRTPStarted event indicates that an RTP media stream has been
started. This event accompanies the call object in an IPCC environment.

Syntax

C++: void OnCallRTPStarted(Arguments& args)
COM: void OnCallRTPStarted (IArguments * args)
VB: session_OnCallRTPStarted (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

MonitorID UINT The Monitor ID of the device or call monitor
that caused this message to be sent to the client,
or zero if there is no monitor associated with
the event (All Events Service).
6-115
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISilentMonitorEvents
PeripheralID UINT The ICM PeripheralID of the ACD where the
device is located.

ClientPort UINT The TCP/IP port number of the CTI Client
connection

Direction USHORT The direction of the event. One of the
following values:

 0: Input;

 1: Output;

 2: Bi-directional.

RTPType USHORT The type of the event. One of the following
values:

 0: Audio;

 1: Video;

 2: Data.

BitRate UINT The media bit rate, used for g.723 payload only

EchoCancellation USHORT on/off

PacketSize UINT In milliseconds

PayloadType USHORT The audio codec type

ConnectionDevice
IDType

USHORT Indicates the type of the connection identifier
supplied in the ConnectionDeviceID floating
field

ConnectionCallID UINT The Call ID value assigned to this call by the
peripheral or ICM software.

Connection
DeviceID

STRING The identifier of the connection between the
call and the device.

ClientAddress STRING The IP address of the phone.

AgentID
(optional)

STRING The agent’s ACD login ID.

AgentExtension
(optional)

STRING The agent’s ACD teleset extension

AgentInstrument
(optional)

STRING The agent’s ACD instrument number
6-116
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISilentMonitorEvents
OnCallRTPStopped
The OnCallRTPStopped event indicates that an RTP media has been stopped.
This event accompanies the call object in an IPCC environment.

Syntax

C++: void OnCallRTPStopped(Arguments& args)
COM: void OnCallRTPStopped (IArguments * args)
VB: session_OnCallRTPStopped (ByVal args As
CtiosCLIENTLib.IArguments)

Parameters

args

Arguments array containing the following fields.

Field Name Value Data Type

MonitorID The Monitor ID of the device or call monitor
that caused this message to be sent to the client,
or zero if there is no monitor associated with
the event (All Events Service).

UINT

PeripheralID The ICM PeripheralID of the ACD where the
device is located.

UINT

ClientPort The TCP/IP port number of the CTI Client
connection that was closed.

UINT

Direction The direction of the event.

One of the following values:

 0: Input;

 1: Output;

 2: Bi-directional.

USHORT

ConnectionDevice
IDType

Indicates the type of the connection identifier
supplied in the ConnectionDeviceID floating
field

USHORT
6-117
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISilentMonitorEvents
OnStartSilentMonitorConf
The OnStartSilentMonitorConf event is sent to the monitoring application to
indicate that a StartSilentMonitorRequest has been processed at the CTIOS
server.

Syntax

C++:void OnStartSilentMonitorConf (Arguments & args);
COM: HRESULT OnStartSilentMonitorConf ([in] Arguments* args);
VB: Session_ OnStartSilentMonitorConf (ByVal args as
CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

ConnectionCallID The Call ID value assigned to this call by the
peripheral or ICM software.

UINT

ConnectionDevice
ID

The identifier of the connection between the
call and the device.

STRING

ClientAddress The IP address of the phone. STRING

AgentID
(optional)

The agent’s ACD login ID. STRING

AgentExtension
(optional)

The agent’s ACD teleset extension STRING

AgentInstrument
(optional)

The agent’s ACD instrument number STRING

Keyword Type Description

MonitoredUniqueObject
ID

STRING Unique Object ID of the object being
monitored
6-118
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISilentMonitorEvents
OnSilentMonitorStartedEvent
The OnSilentMonitorStartedEvent event is fired to the subscriber to indicate that
a silent monitor session has been started on its behalf and that audio transmission
to the monitoring client has been started.

Syntax

C++: void OnSilentMonitorStartedEvent(Arguments & args);
COM: HRESULT OnSilentMonitorStartedEvent([in] Arguments* args);

AgentID STRING Agent ID of the agent to be monitored.
This message will contain either
AgentID or DeviceID, but not both.

DeviceID STRING Device ID of the agent to be
monitored. This message will contain
either AgentID or DeviceID, but not
both.

PeripheralID INT The ICM PeripheralID of the ACD
where the silent monitor start has been
requested.

MonitoringIPAddress STRING TCP/IP address of the monitoring
application.

MonitoringIPPort INT TCP/IP port of the monitoring
application.

SMSessionKey UNSIGNED
SHORT

Unique identifier for the Silent
Monitor Session.

HeartbeatInterval INT Heartbeat interval for the silent
monitor session.

HeartbeatTimeout INT Timeout for no activity.

OriginatingServerID STRING TCP/IP Address:Port of the CTIOS
server from which the request
originated.

OriginatingClientID STRING Client Identification of the monitoring
application.
6-119
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISilentMonitorEvents
VB: Session_ OnSilentMonitorStartedEvent(ByVal args as
CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

MonitoredUniqueObject
ID

STRING Unique Object ID of the object being
monitored

AgentID STRING Agent ID of the agent being
monitored. This message will contain
either AgentID or DeviceID, but not
both.

DeviceID STRING Device ID of the agent being
monitored. This message will contain
either AgentID or DeviceID, but not
both.

PeripheralID INT The ICM PeripheralID of the ACD
where silent monitoring has started.

MonitoringIPAddress STRING TCP/IP address of the monitoring
application

MonitoringIPPort INT TCP/IP port of the monitoring
application

SMSessionKey UNSIGNED
SHORT

Unique identifier for the Silent
Monitor Session.

HeartbeatInterval INT Heartbeat interval for the silent
monitor session

HeartbeatTimeout INT Timeout for no activity.

OriginatingServerID STRING TCP/IP Address:Port of the CTIOS
server from which the request
originated

OriginatingClientID STRING Client Identification of the monitoring
application
6-120
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISilentMonitorEvents
OnSilentMonitorStartRequestedEvent
The OnSilentMonitorStartRequestedEvent event is fired to the subscriber to
indicate that a silent monitor session request has arrived and that it will be
established on its behalf if the DoDefaultMessageHandling parameter is set to
True. The default behavior is to start sending audio and establish the session
automatically. If the subscriber wishes to process the event by itself, it must set
the DoDefaultMessageHandling parameter to False and invoke
AcceptSilentMonitoring when it is ready to start the session and call
ReportSMSessionStatus to the monitoring client.

CTI OS server generates this event when ever a remote application calls the
StartSilentMonitorRequest method.

Syntax

C++: void OnSilentMonitorStartRequestedEvent(Arguments & args);
COM: HRESULT OnSilentMonitorStartRequestedEvent([in] Arguments*
args);
VB: Session_ OnSilentMonitorStartRequestedEvent(ByVal args as
CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

MonitoredUniqueObject
ID

STRING Unique Object ID of the object being
monitored.

AgentID STRING Agent ID of the agent to be monitored.
This message will contain either
AgentID or DeviceID, but not both.

DeviceID STRING Device ID of the agent to be
monitored. This message will contain
either AgentID or DeviceID, but not
both.
6-121
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISilentMonitorEvents
OnSilentMonitorSessionDisconnected
The OnSilentMonitorSessionDisconnected event is sent to the application to
report errors if the connection fails between the monitoring and monitored clients

PeripheralID INT The ICM PeripheralID of the ACD
where the silent monitor start has been
requested.

MonitoringIPAddress STRING TCP/IP address of the monitoring
application

MonitoringIPPort INT TCP/IP port of the monitoring
application

SMSessionKey UNSIGNED
SHORT

Unique identifier for the Silent
Monitor Session.

HeartbeatInterval INT Heartbeat interval for the silent
monitor session

HeartbeatTimeout INT Timeout for no activity

OriginatingServerID STRING TCP/IP Address:Port of the CTIOS
server from which the request
originated

OriginatingClientID STRING Client Identification of the monitoring
application

DoDefaultMessage
Handling

BOOLEAN When this parameter is set to True, it
instructs the SilentMonitorManager to
immediately start sending audio and
establish the silent monitor session. If
this parameter is set to False, it
instructs the SilentMonitorManager to
not send voice and to not establish the
silent monitor session. In this case, it
is the responsibility of the subscriber
to report this status accordingly.
6-122
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISilentMonitorEvents
Syntax

C++: void OnSilentMonitorSessionDisconnected (Arguments & args);
COM: HRESULT OnSilentMonitorSessionDisconnected ([in] Arguments*
args);
VB: Session_ OnSilentMonitorSessionDisconnected (ByVal args as
CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

OnSilentMonitorStopRequestedEvent
The OnSilentMonitorStopRequestedEvent event is fired to the subscriber to
indicate that a silent monitor session was stopped on his behalf. CTI OS server
generates this event whenever a remote application calls the
StopSilentMonitorRequest method.

Syntax

C++:void OnSilentMonitorStopRequestedEvent(Arguments & args);
COM: HRESULT OnSilentMonitorStopRequestedEvent([in] Arguments*
args);
VB: Session_ OnSilentMonitorStopRequestedEvent(ByVal args as
CTIOSCLIENTLIB.IArguments)

Keyword Type Description

MonitoredUniqueObject
ID

STRING Unique Object ID of the object being
monitored

SMSessionKey UNSIGNED
SHORT

Unique identifier for the Silent
Monitor Session.

StatusCode SHORT One of the ISilentMonitorEvent status
codes in Table 6-5.
6-123
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISilentMonitorEvents
Parameters

args

Arguments array containing the following fields.

OnSilentMonitorStatusReportEvent
The OnSilentMonitorStatusReportEvent event indicates a change in status of a
silent monitor session. This event sent only to the monitoring application.

Keyword Type Description

MonitoredUniqueObject
ID

STRING Unique Object ID of the object being
monitored.

AgentID STRING Agent ID of the agent who had been
monitored. This message will contain
either AgentID or DeviceID, but not
both.

DeviceID STRING Device ID of the agent who had been
monitored. This message will contain
either AgentID or DeviceID, but not
both.

PeripheralID INT The ICM PeripheralID of the ACD
where silent monitoring has stopped.

MonitoringIPAddress STRING TCP/IP address of the monitoring
application.

SMSessionKey UNSIGNED
SHORT

Unique identifier for the Silent
Monitor Session.

OriginatingServerID STRING TCP/IP Address:Port of the CTIOS
server from which the request
originated.

OriginatingClientID STRING Client Identification of the monitoring
application.
6-124
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISilentMonitorEvents
Syntax

C++: void OnSilentMonitorStatusReportEvent (Arguments & args);
COM: HRESULT OnSilentMonitorStatusReportEvent ([in] Arguments*
args);
VB: Session_ OnSilentMonitorStatusReportEvent (ByVal args as
CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

Keyword Type Description

MonitoredUniqueObject
ID

STRING Unique Object ID of the object being
monitored

SMSessionKey UNSIGNED
SHORT

Unique identifier for the Silent
Monitor Session.

StatusCode SHORT One of the ISilentMonitorEvent status
codes in Table 6-5.

OriginatingServerID STRING TCP/IP Address:Port of the CTIOS
server from which the request
originated

OriginatingClientID STRING Client Identification of the monitoring
application

TargetCILClientID STRING CIL Client ID of the monitoring
application

Table 6-5 ISilentMonitorEvent Status Codes

enum Value
Numeric Value
(Hex)

General Codes

eSMStatusUnknown

eSMStatusOK -1
6-125
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISilentMonitorEvents
eSMStatusFailed 0x00000000

eSMStatusComError 0x00000001

eSMStatusMonitorStarted 0x00000002

eSMStatusMonitorStopped 0x00000003

eSMStatusHeartbeatTimeout 0x00000004

eSMStatusOutOfMemory 0x00000005

eSMStatusPortUnavailable 0x00000006

eSMStatusIncorrectStateForThisAction 0x00000007

eSMStatusResourceError 0x00000008

eSMStatusRejectedBadParameter 0x00000009

eSMStatusWinsockError 0x0000000A

eSMStatusMediaTerminationNotPresent 0x0000000B

eSMStatusIPPhoneInformatioNotAvailable 0x0000000C

eSMStatusMissingParameter 0x0000000E

eSMStatusSessionNotFound 0x0000000F

eSMStatusSessionAlreadyExists 0x00000010

eSMStatusDisconnected 0x00000011

eSMStatusInvalidStateForAction 0x00000012

eSMStatusInProgress 0x00000013

eSMStatusMaxSessionsExceeded 0x00000014

Silent Monitor Session Codes

eSMStatusSessionTerminatedAbnormally D

eSMStatusRejectedAlreadyInSession 0x10000000

eSMStatusRejectedWinPcapNotPresent 0x10000001

eSMStatusWinPcapError 0x10000002

eSMStatusMediaUnknownCodec 0x10000003

Table 6-5 ISilentMonitorEvent Status Codes

enum Value
Numeric Value
(Hex)
6-126
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISilentMonitorEvents
OnStopSilentMonitorConf
This OnStopSilentMonitorConf event is sent to the monitoring application to
indicate that a StopSilentMonitorRequest has been processed at the CTI OS
server.

Syntax

C++: void OnStopSilentMonitorConf (Arguments & args);
COM: HRESULT OnStopSilentMonitorConf ([in] Arguments* args);
VB: Session_ OnStopSilentMonitorConf (ByVal args as
CTIOSCLIENTLIB.IArguments)

eSMStatusIncorrectSessionMode 0x10000004

eSMStatusPeerSilentMonitorNotEnabled 0x10000005

eSMStatusSilentMonitorNotEnabled 0x10000006

eSMStatusNoResponseFromPeer 0x10000007

eSMStatusPeerLoggedOut 0x10000008

eSMStatusSessionTerminatedByMonitoredClient 0x10000009

eSMStatusSessionTerminatedByMonitoringClient 0x1000000A

eSMStatusNoRTPPacketsReceivedFormIPPhone 0x1000000B

eSMStatusSessionConnectionToDelegateLost 0x1000000F

eSMStatusMTError 0x20000000

Voice Capture-Specific Codes

eSMStatusWPNoPacketsReceived 0x30000000

eSMStatusWPFailedToOpenDevice 0x30000001

eSMStatusWPFailedToSetFilterExp 0x30000002

eSMStatusWPErrorInFilterExp 0x30000003

Table 6-5 ISilentMonitorEvent Status Codes

enum Value
Numeric Value
(Hex)
6-127
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
ISilentMonitorEvents
Parameters

args

Arguments array containing the following fields.

OnRTPStreamTimedoutEvent
The OnRTPStreamTimedoutEvent event is sent to the monitored application to
report that no RTP voice packets have been received from the monitored IP
Phone.

Keyword Type Description

MonitoredUniqueObject
ID

STRING Unique Object ID of the object being
monitored

AgentID STRING Agent ID of the agent who had been
monitored. This message will contain
either AgentID or DeviceID, but not
both.

DeviceID STRING Device ID of the agent who had been
monitored. This message will contain
either AgentID or DeviceID, but not
both.

PeripheralID INT The ICM PeripheralID of the ACD
where silent monitoring has stopped.

MonitoringIPAddress STRING TCP/IP address of the monitoring
application

SMSessionKey UNSIGNED
SHORT

Unique identifier for the Silent
Monitor Session.

OriginatingServerID STRING TCP/IP Address:Port of the CTIOS
server from which the request
originated

OriginatingClientID STRING Client Identification of the monitoring
application
6-128
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
IGenericEvents Interface
Syntax

C++: void OnRTPStreamTimedoutEvent (Arguments & args);
COM: HRESULT OnRTPStreamTimedoutEvent ([in] Arguments* args);
VB: Session_ OnRTPStreamTimedoutEvent (ByVal args as
CTIOSCLIENTLIB.IArguments)

Parameters

args

Arguments array containing the following fields.

IGenericEvents Interface
The IGenericEvents interface receives Generic events. Unlike other interfaces
that have a callback method for each event, the IGenericEvents interface has one
method that passes the CtiOs_Enums.EventID code and the Arguments for the
event.

OnEvent
Passes the eventID code and arguments for generic events received by the
IGenericEvents interface.

Syntax

JAVA: void OnEvent(int iEventID, Arguments rArgs

Keyword Type Description

MonitoredUniqueObject
ID

STRING Unique Object ID of the object being
monitored

SMSessionKey UNSIGNED
SHORT

Unique identifier for the Silent
Monitor Session.

StatusCode SHORT One of the ISilentMonitorEvent status
codes in Table 6-5.
6-129
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
Java Adapter Classes
.NET: void OnEvent(int iEventID,
Cisco.CtiOs.Cil.EventPublisher.EventPublisherEventArgs args)

Java Adapter Classes
The CTI OS Java CIL contains the same adapter classes as the C++ CIL plus the
LogEventsAdapter class. This class provides the default implementation for the
message handlers in ILogEvents.

This section lists the methods available in the CTI OS Java CIL for event
subscription and unsubscription.

IAllInOne
The following methods subscribe and unsubscribe the CTI OS Session Object for
the IAllInOne interface.

int addAllInOneEventListener(IAllInOne allInOneEvents)
int removeAllInOneEventListener(IAllInOne allInOneEvents)

IAgentEvents
The following methods subscribe and unsubscribe the CTI OS Session Object for
the IAgentEventsinterface.

int addAgentEventListener(IAgentEvents agentEvents)
int removeAgentEventListener(IAgentEvents agentEvents)

IButtonEnablementEvents
The following methods subscribe and unsubscribe the CTI OS Session Object for
the IButtonEnablementEvents interface.

int addButtonEnablementEventListener(IButtonEnablementEvents
buttonEvents)
int removeButtonEnablementEventListener(IButtonEnablementEvents
buttonEvents)
6-130
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
Events in Java CIL
ICallEvents
The following methods subscribe and unsubscribe the CTI OS Session Object for
the ICallEvents interface.

int addCallEventListener (ICallEvents callEvents)
int removeCallEventListener (ICallEvents callEvents)

ISkillGroupEvents
The following methods subscribe and unsubscribe the CTI OS Session Object for
the ISkillGrouEvents interface.

int addSkillGroupEventListener (ISkillGroupEvents skillGroupEvents)
int removeSkillGroupEventListener (ISkillGroupEvents skillGroupEvents)

Events in Java CIL
To subscribe for events in the Java CIL, use the AddEventListener method. This
method has the following syntax:

int AddEventListener(IGenericEvents Listener, int iListID)

where Listener is the IGenericEvents object that is subscribing for events and iListID
is the ID of the subscriber list to add this listener to. Java subscriber list IDs are part
of the CtiOs_Enums.SubscriberList interface; each C++/COM/VB event interface
has a corresponding Java subscriber list (for example, C++/COM/VB ISessionEvents
corresponds to Java eSessionList). See the Javadoc file for more details on the
CtiOs_Enums.SubscriberList interface.

The IGenericEvents interface, though it contains the C++/COM/VB events
documented in this chapter, does not have a callback method for each event.
Instead, the OnEvent method passes the event ID code and arguments for each
event. The OnEvent method has the following syntax:

void OnEvent(int iEventID, Arguments rArgs)
6-131
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
Events in .NET CIL
where iEventID is the event ID code for the event and rArgs is the arguments for
the event. The arguments for each Java event are the same as for the
corresponding C++/COM/VB event. See the Javadoc file for details on the
IGenericEvents interface.

To unsubscribe for events in the Java CIL, use the RemoveEventListener method.
This method has the following syntax:

int RemoveEventListener(IGenericEvents Listener, int iListID)

where Listener is the IGenericEvents object that is unsubscribing for events and
iListID is the ID of the subscriber list to remove this listener from.

Events in .NET CIL
To subscribe for events in the .NET CIL, use the AddEventListener method. This
method has the following syntax:

CilError AddEventListener(IGenericEvents Listener, int iListID)

where Listener is the IGenericEvents object that is subscribing for events and iListID
is the ID of the subscriber list to add this listener to. Subscriber list IDs for .NET are
part of the CtiOs_Enums.SubscriberList interface; each C++/COM/VB event
interface has a corresponding .NET subscriber list (for example, C++/COM/VB
ISessionEvents corresponds to .NET eSessionList).

The IGenericEvents interface, though it contains the C++/COM/VB events
documented in this chapter, does not have a callback method for each event.
Instead, the OnEvent method passes the event ID code and arguments for each
event. The OnEvent method has the following syntax:

void OnEvent(Object sender,
Cisco.CtiOs.Cil.EventPublisher.EventPublisherEventArgs eventArgs)

where, sender is a null object and eventArgs contains the eventID and arguments
for the event. The arguments for each .NET event are the same as for the
corresponding C++/COM/VB event.

The EventPublisherEventArgs class is a data type that defines the information
passed to receivers of the event. This information includes the event ID and an
Arguments array containing the arguments for the event. Therefore, event
6-132
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
Getting All Event Parameters
handling code must extract the event arguments from the
EventPublisherEventArgs object as shown in the following sample code snippet,
which uses the .NET CIL:

Arguments args = eventArgs.rArgs;
EventID receivedEvent = (EventID) eventArgs.iEventID;

switch(receivedEvent)
{

case EventID.eQueryAgentStatisticsConf:
ProcessQueryConf(args);
break;

...
}

To unsubscribe for events in the .NET CIL, use the RemoveEventListener
method.

This method has the following syntax:

CilError RemoveEventListener(IGenericEvents Listener, int iListID)

where Listener is the IGenericEvents object that is unsubscribing for events and
iListID is the ID of the subscriber list from which to remove this listener.

Getting All Event Parameters

How to Get All Parameters from an Event
The MinimizeEventArgs registry value controls the amount of nonessential call
object parameters that are sent to the client. When MinimizeEventArgs is set to 1,
a minimal set of nonessential call object parameters are sent to the CTI OS Client.
When the MinimizeEventArgs registry value is set to 0, the CTI OS server sends
to CTI OS Clients the event parameters listed in Table 6-6.

The MinimizeEventArgs value is located under the following registry key:
6-133
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
Getting All Event Parameters
HKEY_LOCAL_MACHINE\SOFTWARE\Cisco Systems,
Inc.\Ctios\<Customer-Instancename>\CTIOS1\Server\CallObject

Table 6-6 Full List of Event Parameters

Event Name Parameters

eCallRetrievedEvent CTIOS_RETRIEVINGDEVICEID

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_CALLSTATUS*

CTIOS_FILTERTARGET**

eCallHeldEvent CTIOS_HOLDINGDEVICEID

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eCallConnectionClearedEvent CTIOS_RELEASINGDEVICEID

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*
6-134
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
Getting All Event Parameters
eCallTransferredEvent CTIOS_PRIMARYCALLID

CTIOS_SECONDARYCALLID

CTIOS_TRANSFERRINGDEVICEID

CTIOS_TRANSFERREDDEVICEID

CTIOS_NUMPARTIES

ConnectedParty[PartyNumber]

CTIOS_ISTRANSFERCONTROLLER

GenerateCallDataUpdateArgs()***

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

Table 6-6 Full (continued) List of Event Parameters

Event Name Parameters
6-135
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
Getting All Event Parameters
eCallConferencedEvent CTIOS_PRIMARYCALLID

CTIOS_SECONDARYCALLID

CTIOS_CONTROLLERDEVICEID

CTIOS_ADDEDPARTYDEVICEID

CTIOS_PRIMARYDEVICEID

CTIOS_SECONDARYDEVICEID

CTIOS_NUMPARTIES

ConnectedParty[PartyNumber]

GenerateCallDataUpdateArgs()***

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eCallBeginEvent,

eCallDataUpdateEvent

GenerateCallDataUpdateArgs()***

CTIOS_DEVICEID

CTIOS_DIVERTINGDEVICEID

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

Table 6-6 Full (continued) List of Event Parameters

Event Name Parameters
6-136
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
Getting All Event Parameters
eCallDivertedEvent GenerateCallDataUpdateArgs()***

CTIOS_DIVERTINGDEVICEID

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eSnapshotCallConf Includes all the parameters except for:

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_CALLCONNECTIONCALLID

CTIOS_CALLCONNECTIONDEVICEIDTYP
E

CTIOS_CALLCONNECTIONDEVICEID

CTIOS_CALLDEVICECONNECTIONSTAT
E

CTIOS_CALLDEVICETYPE

Table 6-6 Full (continued) List of Event Parameters

Event Name Parameters
6-137
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
Getting All Event Parameters
eCallEstablishedEvent CTIOS_ANSWERINGDEVICEID

CTIOS_CALLINGDEVICEID

CTIOS_CALLEDDEVICEID

CTIOS_ALERTINGDEVICEID

CTIOS_SKILLGROUPID

CTIOS_SKILLGROUPNUMBER

CTIOS_SKILLGROUPPRIORITY

CTIOS_SERVICEID

CTIOS_SERVICENUMBER

CTIOS_LINETYPE

CTIOS_MEASUREDCALLQTIME

CTIOS_CAMPAIGNID

CTIOS_QUERYRULEID

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

Table 6-6 Full (continued) List of Event Parameters

Event Name Parameters
6-138
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
Getting All Event Parameters
eCallDeliveredEvent CTIOS_ALERTINGDEVICEID

CTIOS_SKILLGROUPID

CTIOS_SKILLGROUPNUMBER

CTIOS_SKILLGROUPPRIORITY

CTIOS_SERVICEID

CTIOS_SERVICENUMBER

CTIOS_LINETYPE

CTIOS_MEASUREDCALLQTIME

CTIOS_CAMPAIGNID

CTIOS_QUERYRULEID

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

Table 6-6 Full (continued) List of Event Parameters

Event Name Parameters
6-139
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
Getting All Event Parameters
eCallServiceInitiatedEvent,

eCallOriginatedEvent,

eCallQueuedEvent,

eCallDequeuedEvent

CTIOS_SKILLGROUPID

CTIOS_SKILLGROUPNUMBER

CTIOS_SKILLGROUPPRIORITY

CTIOS_SERVICEID

CTIOS_SERVICENUMBER

CTIOS_LINETYPE

CTIOS_MEASUREDCALLQTIME

CTIOS_CAMPAIGNID

CTIOS_QUERYRULEID

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eControlFailureConf CTIOS_PERIPHERALERRORCODE

CTIOS_ERRORMESSAGE

CTIOS_FAILURECODE

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

Table 6-6 Full (continued) List of Event Parameters

Event Name Parameters
6-140
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
Getting All Event Parameters
* If the eCallFailedEvent notification is received, the CTIOS_CALLSTATUS
parameter will not be added to any more events for the call id specified in the
eCallFailedEvent.

** If there is an agent on the device, then CTIOS_FILTERTARGET is added to
all events listed in Table 6-6.

*** the GenerateCallDataUpdateArgs() method adds the following parameters to
the event:

CTIOS_PERIPHERALID, CTIOS_PERIPHERALTYPE,
CTIOS_CALLTYPE, CTIOS_UNIQUEOBJECTID,
CTIOS_ROUTERCALLKEYDAY, CTIOS_ROUTERCALLKEYCALLID,
CTIOS_CONNECTIONCALLID, CTIOS_ANI,
CTIOS_USERTOUSERINFO, CTIOS_DNIS, CTIOS_DIALEDNUMBER,
CTIOS_CALLERENTEREDDIGITS, CTIOS_SERVICENUMBER,
CTIOS_SERVICEID, CTIOS_SKILLGROUPNUMBER,

eFailureConf,

eFailureEvent,

eCallFailedEvent

CTIOS_ERRORMESSAGE

CTIOS_FAILURECODE

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

eCallEndEvent CTIOS_DEVICEID

CTIOS_ENABLEMENTMASK

CTIOS_ICMENTERPRISEUNIQUEID

CTIOS_UNIQUEOBJECTID

CTIOS_DEVICEUNIQUEOBJECTID

CTIOS_FILTERTARGET**

CTIOS_CALLSTATUS*

Table 6-6 Full (continued) List of Event Parameters

Event Name Parameters
6-141
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 6 Event Interfaces and Events
Getting All Event Parameters
CTIOS_SKILLGROUPPRIORITY, CTIOS_CALLWRAPUPDATA,
CTIOS_CAMPAIGNID, CTIOS_QUERYRULEID,
CTIOS_CALLVARIABLE1, CTIOS_CALLVARIABLE2,
CTIOS_CALLVARIABLE3, CTIOS_CALLVARIABLE4,
CTIOS_CALLVARIABLE5, CTIOS_CALLVARIABLE6,
CTIOS_CALLVARIABLE7, CTIOS_CALLVARIABLE8,
CTIOS_CALLVARIABLE9, CTIOS_CALLVARIABLE10,
CTIOS_CUSTOMERPHONENUMBER,
CTIOS_CUSTOMERACCOUNTNUMBER, CTIOS_NUMNAMEDVARIABLES,
CTIOS_NUMNAMEDARRAYS, CTIOS_ECC, CTIOS_CTICLIENTS
6-142
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Ente

C H A P T E R 7

CtiOs Object

All of the interface objects in the CTIOS Client Interface Library support some
common features, such as the IsValid and GetValue methods. This chapter
describes these common features.

The CCtiOsObject class is the common base class for the objects in the CTIOS
client interface library. It is implemented as follows:

 • In C++: all of the interface objects (CAgent, CCall, CCtiOsSession,
CSkillGroup) derive from the CtiOS object. Thus, all the interface methods
described in this chapter are directly available on the C++ objects.

 • In COM (VB and C++): the COM objects for Agent, Call, Session, and
SkillGroup publish a subset of these methods (as is appropriate for the
language), and the underlying implementation of the objects uses the C++
CCtiOsObject class to provide these features.

 • In Java: All CTI OS interface objects (Agent, Call, Session, and SkillGroup)
derive from the CtiOS object. Thus, all the interface methods described in this
chapter are directly available on the Java objects.

 • In .NET: all of the interface objects (Agent, Call, Session, and SkillGroup)
derive from the CtiOS object. Thus, all the interface methods described in this
chapter are directly available on the .NET objects.

The CCtiOsObject provides basic services including:

 • Dynamic management of the object properties

 • Object lifetime control using a reference counting mechanism.

 • Run-time class information
7-1
rprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
Methods
Table 7-1 lists the available CCtiOsObject class methods.

DumpProperties
The DumpProperties method returns all the properties of the object. This method
builds a string showing all of the properties in the form “key1 = value1; key2 =
value2;...”.

Syntax

C++: string DumpProperties ()
COM:HRESULT DumpProperties (/*[out,retval]*/ BSTR* bstrValue)
VB: DumpProperties() As String
Java:String DumpProperties()
.NET:System.String DumpProperties()

Table 7-1 CCtiOsObject Class Methods

Method Description

DumpProperties Returns a string listing all of an object’s
properties’ names and values.

GetAllProperties Returns all of the object’s properties as Args
(name/value pairs).

GetElement Returns the value of an element.

GetLastError Returns the last error that occurred on the calling
thread.

GetNumProperties Returns the number of properties of an object.

GetPropertyName Returns a property name in a string format.

GetPropertyType Returns the data type of the specified property.

GetValue, GetValueInt,
GetValueString,
GetValueArray

Returns the value of a specified property.

IsValid Checks to see if the property of an object is valid.
7-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
Parameters

bstrValue

The output parameter (return parameter in VB) containing a string listing the
names and values of the object’s properties.

Return Value

COM: Default HRESULT return value. See Chapter 3, “CIL Coding
Conventions.”

All Others: The string listing the names of all the object’s properties.

GetAllProperties
The GetAllProperties method returns all of the object’s properties and their
values. For the properties that are calls, agents, or skillgroups, their string
UniqueObjectIDs are returned, not the objects themselves. To get the objects
themselves use GetObjectFromObjectID, explained in Chapter 8, “Session
Object.”

Syntax

C++: bool GetAllProperties (Arguments** arguments)
COM:HRESULT GetAllProperties (/*[out]*/ IArguments** arguments,
/*[out,retval]*/ VARIANT_BOOL* errorcode)
VB: GetAllProperties arguments As (CTIOSCLIENTLib.IArguments) As Bool
Java, .NET:Arguments GetAllProperties()

Parameters

C++, COM, VB: arguments

Output parameter in the form of an arguments array that has all of the
property names and values of the object.

errorcode

An output parameter (return parameter in VB) that contains a boolean
indicating success or lack thereof.
7-3
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
Return Value

C++ , VB: True upon success and false upon failure.

COM: Always returns S_OK. The errorcode parameter should be used to
determine success or failure of the method call.

.NET, Java: NULL if the value requested is not found or if there is an error. If
the method succeeds, it returns a reference to an Arguments object containing all
of the properties of the object.

GetElement
Given a property of type Arguments whose name is specified by the key
parameter, the GetElement method returns the Arg at position element of that
Arguments array.

Syntax

C++: Arg& GetElement (string& key, int element)
Arg& GetElement (int key, int element)
Arg& GetElement (char* key, int element)

COM: HRESULT GetElement /*[in]*/ VARIANT* key, /*[in]*/ int element,
/*[out,retval]*/ IArg** pIArg)
VB: GetElement (key As VARIANT) As CTIOSCLIENTLib.IArg
Java: Arg GetElement(String key, int element)

Arg GetElement(int key, int element)
.NET:System.Boolean GetElement(System.String key, int element, out
arg rArg)

Parameters

key

A key designating the name of the Arguments property whose element you
want.

element

The integer index of the element to retrieve from the property key.
7-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
COM, VB:pIArg

An output parameter (return parameter in VB) containing an IArg with the
value of the desired element.

.NET: rArg

An output parameter containing the value of the specified element. This
parameter is null if the element is not found.

Return Value

An Arg reference containing the value of the desired element.

The C++ and Java versions of this method return NULL if an error occurs, such
as the key or element is not found. The .NET version of this method returns true
upon success and false upon error.

GetLastError (Java and .NET only)
The GetLastError method returns the last error that occurred on the calling thread.

Syntax

Java:Integer GetLastError()
.NET:System.Boolean GetLastError(out System.Int32 nLastError)

Parameters

Java: None.

.NET: nLastError

Output parameter that is a 32-bit signed integer that contains the returned
value of the last error.

Returns

Java:An Integer object containing the error, or null if the object is not found or if
there is an error.
7-5
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
.NET:The Boolean value true if the value is successfully set; otherwise false.

Remarks
The following example code gets the last error on the current thread and logs the
error message. If GetLastError fails, the code writes a warning message to the log
file.

// First get the last error System.Int32 myLastError;
bool success = GetLastError(out myLastError);
if (!success)
{
// log a message indicating that GetLastError failed
}
else
{
//log a message that indicates what the last error was
LOGBYID(Cisco.CtiOs.Cil.TraceLevel.WARN, “GetLastError returned

last error =” + myLastError);
}

GetNumProperties
The GetNumProperties method returns the number of properties in the current
object.

Syntax

C++: int GetNumProperties ()
COM: HRESULT GetNumProperties (/*[out,retval]*/ int * num
VB: GetNumProperties () As Long
Java, .NET: int GetNumProperties()

Parameters

num

In the COM version, an output parameter (return value in VB, C++, Java, and
.NET) that contains an integer that is the number of properties in the object.
7-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
Return Value

COM: Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

All Others: An integer that is the number of properties currently a part of the
object.

GetPropertyName
The GetPropertyName method returns the name of a property in a string format.

Syntax

C++: string GetPropertyName (int index)
COM: HRESULT GetPropertyName (/* [in] index, /*[out,retval]*/ name)
VB: GetPropertyName (index As Integer) As String
Java: string GetPropertyName (int iIndex)
.NET:virtual System.Boolean GetPropertyName(int iIndex, out
System.String name)

Parameters

index

An integer parameter specifying the index number of the requested property.

name

A string output parameter (return value in C++, VB, and Java) containing the
property’s name.

Return Value

COM: Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

.NET: Boolean value set to true if the method call succeeds, otherwise false.

All Others: A string that contains the property’s name.
7-7
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
GetPropertyType
The GetPropertyType method returns the data type of the specified property.

Syntax

C++: int GetPropertyType (string& key)
int GetPropertyType (int key)
int GetPropertyType (char* key)

COM:HRESULT GetPropertyType (/*[in]*/ VARIANT* key, /*[out,retval]*/
int* value)
VB: GetPropertyType (key As VARIANT) As Int
Java:int GetPropertyType(string sPropName)

int GetPropertyType(int key)
.NET:virtual ArgDataType GetPropertyType(Enum_CtiOs eKeyID)

virtual ArgDataType GetPropertyType(System.String sPropName)

Parameters

key

Keyword ID name of the property whose type you want. In .NET, eKeyId is
the Enum_CtiOs Keyword ID of the property.

COM:value

An integer pointer to the value of the type

Return Value

COM: Default HRESULT return value. See Chapter 3, “CIL Coding
Conventions.”

Others: An integer indicating the property’s type with the following possible
values:

Argument Type Description

ARG_NOTSET Argument type not determined

ARG_INT Signed integer

ARG_SHORT 2 bytes signed integer
7-8
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
GetValue
The GetValue method returns the value of the specified property. Use this method
if you don’t know the type of the property. Otherwise, use the more specific
GetValue methods discussed later in this chapter. When using the COM CIL, do
not use this method for properties of type IDispatch*; instead, use
GetCurrentCall, GetCurrentAgent, GetAllCalls, GetAllAgents, and
GetAllSkillGroups as explained in Chapter 8, “Session Object.”

Syntax

C++:Arg& GetValue (string& key)
Arg& GetValue (int key)
Arg& GetValue (char* key)

COM:HRESULT GetValue (/*[in]*/ VARIANT* key, /*[out,retval]*/ IArg**
value)
VB: GetValue (key As VARIANT) As CTIOSCLIENTLib.IArg
Java:Arg GetValue(String key)

Arg& GetValue (int key)
.NETvirtual System.Boolean GetValue(Enum_CtiOs eKeyID, out Arg obArg)

virtual System.Boolean GetValue(System.String sKey, out Arg obArg)

Parameters

key

The name of the property whose value you want.

ARG_BOOL 1 byte integer

ARG_STRING C++, COM: STL character string

JAVA, VB, .NET: String object

ARG_ARGARRAY Variable length array of Arg

ARG_UINT 32 bit unsigned int

ARG_USHORT 16 bit unsigned short int

ARG_ARGUMENT Arguments array

ARG_REFERENCE Contains a reference to an object of a
CtiOsObject derived class
7-9
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
COM: value

An output value of type Arg** containing the property with the designated
name. To get the value of the property, call GetType() on the Arg and then
call the specific GetValue method, based on the type.

.NET: obArg

Output parameter (return value in C++, VB, and Java) containing the
specified property, as described in the explanation of the value parameter.

Return Value

COM: Default HRESULT return value. See Chapter 3, “CIL Coding
Conventions.”

.NET: Returns true if the value is retrieved, and false if the value is not found.

Others: An Arg containing the specified property. To get the value of the
property, call GetType() on the Arg and then call the specific GetValue method,
based on the type.

GetValueArray
The GetValueArray method returns the Arguments array value of the specified
property. Use this method when you know that the property is of Arguments array
type, such as ECC call variables.

Syntax

C++: Arg& GetValueArray (string& key)
Arg& GetValueArray (enum_Keywords key)
Arg& GetValue (char * key)

COM: HRESULT GetValueArray (/*[in]*/ VARIANT * key, /*[out,retval]*/
IArguments ** value)
VB: GetValueArray (key As VARIANT) As CTIOSCLIENTLib.IArguments
Java: Arguments GetValueArray(String key)

Arguments GetValueArray (int key)
.NET: System.Boolean GetValueArray(Enum_CtiOs eKeyID, out Arguments
arArguments)
7-10
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
Parameters

key

The name of the property whose value you want.

value

COM: An output parameter (return value in VB, C++, and Java) containing
an arArguments** to the returned value of the property.

.NET: An output parameter containing the Arguments array value upon
success. Upon failure, this parameter is set to null.

Return Value

COM: Default HRESULT return value. See Chapter 3, “CIL Coding
Conventions.”

.NET: Returns true if the value is retrieved. Returns false if the value is not found.

Others: A reference to an Arguments array containing the value of the specified
property.

GetValueBoolObj (Java and .NET only)
The GetValueBool method retrieves the Boolean value of the specified property.

Syntax

Boolean GetValueBoolObj(int iKey)
Boolean GetValueBoolObj(String sKey)

Parameters

Key

Key ID for the object to be retrieved.
7-11
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
Returns

A Boolean object representation of the contained value or null if error.

GetValueInt
The GetValueInt method returns the integer value of the specified property. Use
this method when you know that the property has an integer type.

Syntax

C++: int GetValueInt (string& key)
int GetValueInt (int key)
int GetValueInt (char* key)

COM: HRESULT GetValueInt /*[in]*/ VARIANT* key, /*[out,retval]*/
int* value)
VB: GetValueInt (key As VARIANT) As Integer
Java: Not implemented, use GetValueIntObj
.NET: System.Boolean GetValueInt(Enum_CtiOs eKeyID, out System.Int32
nValue)

System.Boolean GetValueInt(System.String sPropname, out
System.Int32 nValue)

Parameters

C++: key

Depending on the method used, either a string or int that contains the name
or ID of the property whose value you want to retrieve.

COM, VB: key

VARIANT containing the ID or name of the prerty to retrieve.

COM: value

An output parameter (return parameter in VB) containing an integer pointer
to the returned value of the property.

.NET: sPropName

The name of the property.

.NET: nValue
7-12
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
Upon success, this output parameter contains the value of the specified
property. Upon failure, this parameter is set to null.

.NET: eKeyID

Keyword ID of the property.

Return Value

COM: Default HRESULT return value. See Chapter 3, “CIL Coding
Conventions.”

.NET: True if the method succeeds.; false if the method fails.

GetValueIntObj (Java only)
Gets the contained value as an integer.

Syntax

Integer GetValueIntObj(int iKey)
Integer GetValueIntObj(String sKey)

Parameters

key

Key ID of the value to be retrieved.

Returns

An Integer object containing a 32 bit signed integer value or null if error.
7-13
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
GetValueShortObj (Java only)
Retrieves a 16 bit short with the specified key from the array.

Syntax

Short GetValueShortObj(int iKey)
Short GetValueShortObj(short sKey)

Parameters

key

Key ID of the value to be retrieved.

Return Value

A Short object containing a 16 bit short value or null if error.

GetValueString
The GetValueString method returns the string value of the property with the
specified name. Use this method when you know that the property is of string
type.

Syntax

C++:string GetValueString (string& key)
string GetValueString (int key)
string GetValueString (char* key)

COM:HRESULT GetValueString (/*[in]*/ VARIANT* key, /*[out,retval]*/
BSTR* value)
VB: GetValueString (key As VARIANT) As String
Java:String GetValueString(String key)

String GetValueString (int key)
.NET:System.Boolean GetValueString(Enum_CtiOs eKeyID, out
System.String strValue)

System.Boolean GetValueString(System.String sPropName, out
System.String strValue)
7-14
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
Parameters

C++, Java: key

Depending on the method used, either a string or int that contains the name
or ID of the property whose value you want to retrieve.

COM, VB: key

VARIANT containing the ID or name of the property to retrieve.

.NET: sPropName

The name of the property values to retrieve.

.NET: strValue

Upon success, this output parameter contains the value of the specified
property. Upon failure, this parameter is set to null.

.NET: eKeyID

Keyword ID of the property.

value

In C++, an output parameter (return parameter in VB) containing a BSTR
pointer to the returned string value of the property.

Return Value

COM: Default HRESULT return value. See Chapter 3, “CIL Coding
Conventions.”

.NET:Boolean value indicating the success or failure of the method call (true, if
success; otherwise false).

Others: A string containing the value of the specified property.

GetValueUIntObj (Java only)
Retrieves a 32 bit unsigned integer with the specified key from the array.

Syntax

Long GetValueUIntObj(int key)
7-15
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
Long GetValueUIntObj(String sKey)

Parameters

key

Key ID of the value to be retrieved.

Returns

A Long object containing the 32 bit unsigned integer value or null if error.

GetValueUShortObj (Java only)
Retrieves a 16 bit unsigned short with the specified key from the array.

Syntax

Integer GetValueUShortObj(int iKey)
Integer GetValueUShortObj(String sKey)

Parameters

key

Key ID of the value to be retrieved.

Returns

An Integer object containing the 16 bit unsigned short value or null if error.

IsValid
The IsValid method tests to see if the object includes the specified property.
7-16
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
Syntax

C++: bool IsValid (string& key)
 bool IsValid (char* key)
 bool IsValid (int key)

COM: HRESULT IsValid (/*[in]*/ VARIANT* key, /*[out,retval]*/
VARIANT_BOOL* value)
VB: IsValid (key As VARIANT)as Bool
Java: boolean IsValid(String key)

boolean IsValid (int key)
.NET: virtual bool IsValid(Enum_CtiOs eKeyID)

virtual bool IsValid(System.String sKey)

Parameters

C++, Java: key

A key containing the name or ID of the property whose validity you are
testing.

COM, VB: key

VARIANT containing the name or ID of the property to retrieve.

.NET: eKeyID

The ID of the property whose validity you are testing.

.NET: sKey

The name of the property whose validity you are testing.

COM: value

An output parameter (return parameter in VB) containing a
VARIANT_BOOL pointer indicating whether or not a property with the
specified name exists for the object.

Return Value

COM: Default HRESULT return value. See Chapter 3, “CIL Coding
Conventions.”

Others: A boolean indicating whether or not a property with the specified name
exists for the object.
7-17
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
ReportError (Java and .NET only)
The ReportError method sets the value of the LastError property to iErrCode and
writes the error to the log as critical.

Syntax

int ReportError(int iError)

Parameters

Error

The error to report.

Returns

The same error code that was passed in through iErrCode.

SetValue (Java and .NET)
The SetValue method adds a new property to the object’s property list and gives
it the provided value. If the property already exists, it replaces its value with the
one provided.

Syntax

boolean SetValue(int iKeyID, Arg rArg
boolean SetValue(int iKeyID, Arguments rArgs)boolean
boolean SetValue(int iKeyID, boolean bValue)
boolean SetValue(int iKeyID, CtiOsObject rObj)
boolean SetValue(int iKeyID, int iValue)
boolean SetValue(int iKeyID, short nValue)
boolean SetValue(int iKeyID, java.lang.String sValue)
boolean SetValue(java.lang.String sPropName, Arg rArg)
boolean SetValue(java.lang.String sPropName, Arguments rArgs)
boolean SetValue(java.lang.String sPropName, boolean bValue)
boolean SetValue(java.lang.String sPropName, CtiOsObject rObj)
boolean SetValue(java.lang.String sPropName, int iValue)
7-18
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
boolean SetValue(java.lang.String sPropName, short nValue)
boolean SetValue(java.lang.String sPropName, java.lang.String sValue)
boolean SetValueUInt (int key, long value)
boolean SetValueUInt (String key, long value)
boolean SetValueUShort (int key, int value)
boolean SetValueUShort (String key, int value

Parameters

key

The key whose value is to be set.

value

The value to use in setting the element with the designated key.

Returns

True if successfully added, false if not.

SetValue (C++, COM, and VB)
The SetValue method sets the value of the specified Agent property

Syntax

C++:bool SetValue(string& key, string& value)
bool SetValue(string& keyValuePair)
bool SetValue(string& key, int value)
bool SetValue(const char * key, const char * value)
bool SetValue(const char * keyValuePair)
bool SetValue(const char * key, int value)

COM:HRESULT SetValue (/*[in]*/ VARIANT *key, /*[in]*/ VARIANT *value,
/*[out,retval]*/ VARIANT_BOOL * errorcode)
VB: SetValue (key As Variant, value As Variant) As Bool

Parameters

key
7-19
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 7 CtiOs Object
Methods
An input parameter that contains the name of the property whose value you
want to set.

value

An input parameter containing the value to be used in setting the specified
property.

keyValuePair

An input parameter containing a string in the format “key=value” where key
is a property to set and value is the new value.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

COM: Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

All Others: A boolean indicating the success or failure of the method.

Remarks

This method should only be used when first creating a new Agent in preparation
for logging in. Therefore, it should be used to set the AgentID, AgentInstrument,
AgentPassword, PeripheralID, and AutoLogin only.
7-20
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Ente

C H A P T E R 8

Session Object

The Client Interface Library’s Session object is used to establish a connection to
an active CTI OS server. The main functions of the Session object are:

 • Managing the connection to the CTI OS Server

 • Distributing events to the appropriate objects and event subscribers

 • Creating and managing the collections of Agent, Call, and SkillGroup objects

 • Automatically recovering from failures

Typically, an application has a single instance of the Session object, which is used
by all other CIL objects to send and receive events. However, there are no
restrictions on the number or types of Session objects one application can employ.
It is possible, and sometimes desirable, to establish and manage multiple
independent Sessions, for example to use multiple current event streams. If there
is more than one Session object monitoring the same Agent or Call, each Session
object will receive its own events. The order in which events are received is not
guaranteed when there are multiple Session objects.

For a step-by-step explanation of using the Session object to connect with CTI OS
Server, see the section “Connecting to the CTI OS Server” in Chapter 4,
“Building Your Application.”

The Session object creates new Call, Agent, and SkillGroup objects upon receipt
of an event for that object if the targeted object does not already exist. The Session
object maintains collections of all Agents, Calls, SkillGroups, and WaitObjects.
Object lifetime is managed by the Session object, and thus it is important that the
client application not delete the objects, which would render the object reference
8-1
rprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Session Object Properties
invalid and lead to unpredictable results. When the Session is Released, the
connection to CTI OS server is dropped. Any remaining Agent, Call, Skill Group,
or WaitObjects will be released.

The remainder of this chapter describes the data properties and interface methods
of the Session object.

Session Object Properties
Table 8-1 lists the available Session properties.

Note The data type listed for each keyword is the standardized data type discussed in
the section “CTIOS CIL Data Types” in Chapter 3, “CIL Coding Conventions.”
See Table 3-1 for the appropriate language specific types for these keywords.

Table 8-1 Session Properties

Keyword Type Description

ConnectedSince INT Time of day in milliseconds when
connected.

ConnectionMode INT eAgentConnection, eMonitorConnection,
or eNotConnected.

CtiosA STRING Name or TCP/IP address passed as CTI
OS server A.

CtiosB STRING Name or TCP/IP address passed as CTI
OS server B

CurrentAgent object
reference

Returns reference to current agent object
set by the SetAgent method. Object
reference is incremented by one and must
be released when no longer used.
8-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Session Object Properties
CurrentCall object
reference

Valid only if in Agent Connect mode.
When there is more than one call, this
references the current call. The current
call is the call selected. For additional
information, refer to CurrentCall in
Chapter 10, “Call Object.”

CurrentPort INT TCP/IP address of the current connected
CTI OS server. May be port A or B.

CurrentServer STRING Name or TCP/IP address of the current
connected CTI OS server. The value is
blank when the client is not connected to
any server. The name may be blank while
attempting to reconnect after a lost
connection. Otherwise, the name of the
server should be the name of CTI OS
server A or B.

ForcedDisconnect INT The presence of this keyword,

Heartbeat INT Heartbeat time, expressed in seconds. If
not set, default heartbeats are
configurable on the CTI OS server.

LastError INT Last error code, if any. Otherwise this
value is 0.

MaxHeartbeats INT Max heartbeats that can be missed before
switching CTI OS servers. Default is 3
missed heartbeats.

MessageFilter STRING The filter that controls the events received
by the CIL.

Object References ARGUMENTS Array of object references maintained by
the session object. Typically includes
Agent References, CallReferences, and
SkillGroupReferences. Can also include
EmailReferences or Chat References.

PortA INT TCP/IP port for ctiosA.

Table 8-1 Session Properties (continued)

Keyword Type Description
8-3
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
Methods
Table 8-2 lists the available session object methods.

PortB INT TCP/IP port for ctiosB.

TryingPort INT TCP/IP address of the server where a
connection is being attempted. May be
port A or B.

TryingServer STRING Contains the name or TCP/IP address of
the server where a connection is being
attempted. The value is blank if no
connection is being attempted (see
CurrentServer). The name of the server
should be the name of CTI OS server A or
B.

TryingSince INT Time of day in milliseconds when try
began.

Table 8-1 Session Properties (continued)

Keyword Type Description

Table 8-2 Session Object Methods

Method Description

AddEventListener Subscribes a Java or .NET IGenericEvents
object as a listener on a particular subscriber
list.

AddListener methods Registers the subscriber for an event listener.

Connect Establishes a connection to a CTI OS server.

CreateSilentMonitorManager Creates a SilentMonitorManager object
instance.

CreateWaitObject Creates and returns the pointer to a new
CWaitObject.

DestroySilentMonitor
Manager

Deletes a SilentMonitorManager object
instance.
8-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
DestroyWaitObject Destroys the specified wait object

Disconnect Closes the connection to the CTI OS server.

DumpProperties See Chapter 7, “CtiOs Object.”

GetAllAgents Returns a collection of all the agents in the
session.

GetAllCalls Returns a collection of all the calls in the
session.

GetAllProperties See Chapter 7, “CtiOs Object.”

GetAllSkillGroups Returns a collection of all the skill groups in the
session.

GetCurrentAgent Returns the currently selected agent.

GetCurrentCall Returns the currently selected call.

GetCurrentSilentMonitor Returns a pointer to the SilentMonitorManager
object instance that is set as the current manager
in the CTI OS session object.

GetElement See Chapter 7, “CtiOs Object.”

GetNumProperties See Chapter 7, “CtiOs Object.”

GetObjectFromObjectID Returns a Call, Agent, or SkillGroup, given the
object’s UniqueObjectID.

GetPropertyName See Chapter 7, “CtiOs Object.”

GetPropertyType See Chapter 7, “CtiOs Object.”

GetValue See Chapter 7, “CtiOs Object.”

GetValueArray See Chapter 7, “CtiOs Object.”

GetValueInt See Chapter 7, “CtiOs Object.”

GetValueString See Chapter 7, “CtiOs Object.”

IsAgent Checks the current agent and returns true if the
current agent is an agent and not a supervisor.

IsSupervisor Checks the current agent and returns true if the
current agent is a supervisor.

Table 8-2 Session Object Methods (continued)

Method Description
8-5
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
AddEventListener (Java and .NET only)
The AddEventListener method subscribes an IGenericEvents object as a listener
on a particular subscriber list.

Syntax

JAVA: int AddEventListener(IGenericEvents Listener, int iListID)
.NET CilError AddEventListener(IGenericEvents Listener,
SubscriberList iListID)

IsValid See Chapter 7, “CtiOs Object.”

LogToServer Logs a message into the CTI OS Server log.

RemoveListener methods Unregisters the subscriber from an event
listener.

RequestDesktopSettings Sends a message request to the CTI OS Server
to retrieve the desktop settings configured for
this site.

SetAgent Sets an agent to a session object.

SetCurrentCall Associates the current call to a session object.

SetCurrentSilentMonitor Sets the SilentMonitorManager object instance
specified as the current manager in the CTI OS
session object.

SetMessageFilter Sets the message filter that controls the set of
events sent to the CIL.

SetSupervisorSilentMonitor
Mode

Forces supervisors into monitored mode.

SetValue See Chapter 7, “CtiOs Object.”

Table 8-2 Session Object Methods (continued)

Method Description
8-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
Parameters

Listener

The IGenericEvents object that is subscribing for events.

ListID

The ID of the subscriber list to which the Listener is to be added.

Returns

A CtiOs_Enums.CilError code indicating success or failure.

AddListener Methods (C++ only)
The AddListener methods register the subscriber as a listener to the specified set
of events.

Syntax

int AddEventListener(Arguments & rArguments);
int AddSessionEventListener(ISessionEvents * pSessionEvents);
int AddCallEventListener(ICallEvents * pCallEvents);
int AddAgentEventListener(IAgentEvents * pAgentEvents);
int AddSkillGroupEventListener(ISkillGroupEvents * pSkillGroupEvents);
int AddButtonEnablementEventListener(IButtonEnablementEvents *

pButtonEvents);
int AddAllInOneEventListener(IAllInOne * pAllInOneEvents);
int AddSilentMonitorEventListener(ISilentMonitorEvents *

pSilentMonitorEvents);
int AddSessionEventGenericListener(IGenericEvents * pSessionEvents);
int AddCallEventGenericListener(IGenericEvents * pCallEvents);
int AddAgentEventGenericListener(IGenericEvents * pAgentEvents);
int AddSkillGroupEventGenericListener(IGenericEvents *

pSkillGroupEvents);
int AddButtonEnablementEventGenericListener(IGenericEvents *

pButtonEvents);
int AddAllInOneEventGenericListener(IGenericEvents * pAllInOneEvents);
int AddSilentMonitorEventGenericListener(IGenericEvents *

pSilentMonitorEvents);
8-7
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
Remarks

See also the section “Subscribing for Events in C++” in Chapter 4, “Building
Your Application.”

Connect
The Connect method establishes a connection to a CTI OS server.

Syntax

C++: int Connect(Arguments& args)
COM: HRESULT Connect(IArguments *args, int * errorcode)
VB: Connect(args As CTIOSCLIENTLib.IArguments) As Long
Java: int Connect(Arguments args)
.NET: CilError Connect(Arguments rArgs)

Parameters

args

An arguments array containing the connection parameters listed in Table 8-3.

Table 8-3 Connect Parameters

Keyword Type Description

CtiosA STRING Name or TCP/IP address of CTI OS
server A. If this value is not provided, the
value of Ctios B is used.

Note If values of neither Ctios A or
Ctios B is provided, an error is
returned.

CtiosB STRING Name or TCP/IP address of CTI OS
server B. If this value is not provided, the
value of Ctios A is used.

Note If values of neither Ctios A or
Ctios B is provided, an error is
returned.
8-8
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”.

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

A successful request will result in an OnConnection event.

A failure will result in an OnConnectionFailure event. This means that the CIL is
in failover. The CIL will continue to attempt to connect, alternating between hosts
CTIOS_CTIOSA and CTIOS_CTIOSB until connection succeeds at which point
CIL will fire OnConnection. If application wishes to stop failover, it must call
Disconnect.

In some cases, additional failure codes and events may occur:

 • Connect will return a failure code of -1 if it cannot connect with the initial
side of the duplexed CTIOS server pair chosen from the connect parameters.
This error code requires no action on the part of the developer as the CIL will
automatically attempt to connect using the parameters corresponding to the
other side of the duplexed pair.

 • The CIL will retry the connection attempt five times and then will not attempt
to reconnect any longer. The final OnConnectionFailure event will contain
the keyword "FinalAttempt" which informs the client application that the CIL
has discontinued its attempts to reconnect.

PortA (optional) INT TCP/IP port for ctiosA, default = 42028.

PortB (optional) INT TCP/IP port for ctiosB, default = 42028.

Heartbeat (optional) INT Heartbeat time, expressed in seconds. If
not set, default heartbeats are
configurable on CTI OS server.

Table 8-3 Connect Parameters (continued)
8-9
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
Note This behavior will only occur after global settings download has
completed. If global settings download has not completed, the CIL will
continue to retry until successful.

 • The Connect method will cause an OnCTIOSFailure event to be fired to the
client indicating the current state of the system. This is in addition to
OnConnection or OnConnectionFailure.

The following error codes can occur:

 • CIL_OK - no obvious errors, application should wait for an event indicating
whether or not Connect has succeeded

 • CIL_FAIL - initial attempt to connect with host has failed. CIL will fire
OnConnectionFailure and go into failover mode. CIL will continue to attempt
to connect, alternating between hosts CTIOS_CTIOSA and CTIOS_CTIOSB
until connection succeeds at which point CIL will fire OnConnection. If
application wishes to stop failover, it must call Disconnect.

 • E_CTIOS_INVALID_ARGUMENT - a null Arguments parameter was
supplied. Connect is aborted. No events are fired.

 • E_CTIOS_MISSING_ARGUMENT - indicates that method call provided
no value for both CTIOS_CTIOSA or CTIOS_CTIOSB. At least one of these
values must be provided. Connect is aborted. No events are fired.

 • E_CTIOS_IN_FAILOVER - a previous call to connect failed and CIL is
currently in failover attempting to establish a connection. This will continue
until a connection is established at which point the CIL will send
OnConnection indicating that previous call to Connect has succeeded. If
developer wishes to call Connect again with different parameters, he/she
must call Disconnect prior to calling Connect again.

 • E_CTIOS_MODE_CONFLICT - Session is not disconnected (i.e a
previous call to Connect is in progress or session is already connected).
Disconnect must be called before attempting to establish another connection.
CIL may fire an OnConnection event corresponding to previous call to
Connect if connection was in progress but will not fire one corresponding to
this method call.

 • E_CTIOS_SESSION_NOT_CONNECTED - unanticipated error. Connect
is aborted. No events are fired.
8-10
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
CreateSilentMonitorManager
The CreateSilentMonitorManager method creates a SilentMonitorManager object
instance. To delete the object you must call DestroySilentMonitorManager.

Syntax

C++: CSilentMonitorManager * CreateSilentMonitorManager(Arguments &
args);
COM: HRESULT CreateSilentMonitorManager (/*[in]*/ IArguments * args,
/*[out,retval]*/ ISilentMonitorManager * * pISilentMonitor);
VB: CreateSilentMonitorManager (ByVal args as
CTIOSCLIENTLIB.IArguments) As CTIOSCLIENTLIB.ISilentMonitorManager
Java: Not available.
.NET: Not available.

Parameters

args

Arguments array that contain the parameters listed bellow. When any of these
parameters are specified the object is constructed with the corresponding
property initialized to the specified value. If you want the object to be
initialized with the default values specify an empty array.

Keyword Type Description

HeartbeatInterval INT Heartbeat interval for the silent
monitor session.

HeartbeatTimeout INT Timeout for no activity.

MediaTerminationPort INT Required only if manager will be used
in monitoring mode. TCP/IP port
where monitored conversation will be
sent for playback on system sound
card.
8-11
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
Return Value

If successful, a CSilentMonitorManager object is returned. Otherwise, NULL is
returned. To identify the specific error, check the value of the LastError Session
property (Table 8-1).

Remarks

Supported for use with IPCC only.

CreateWaitObject (C++, Java, and .NET)
The CreateWaitObject method creates and returns the pointer to a new
CWaitObject with the specified event mask.

Syntax

C++: CWaitObject * CreateWaitObject(Arguments & args);
Java: WaitObject CreateWaitObject(Arguments rObjParam)
.NET: WaitObject CreateWaitObject(Arguments rObjParam)

Parameters

args (C++). rObjParam (Java)

A reference to an Arguments object that contains the list of events the object
will wait for. The Arguments should contain values where the keys are
“Event1” through “EventN” and the values are the enumerated event IDs.

Return Values

If successful it returns a pointer to the new Wait object. Otherwise, it returns
NULL.

For more information about CWaitObject see Chapter 12, “Helper Classes.”
8-12
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
DestroySilentMonitorManager
The DestroySilentMonitorManager method deletes a SilentMonitorManager
object instance.

Syntax

C++: int DestroySilentMonitorManager(CSilentMonitorManager *
pSilentMonitor);
COM: HRESULT DestroySilentMonitorManager (/*[in]*/
ISilentMonitorManager * pSilentMonitor, /*[out,retval]*/ int *
errorcode);
VB: DestroySilentMonitorManager (ByVal pSilentMonitor As
CTIOSCLIENTLIB. ISilentMonitorManager) As Long
Java: Not available
.NET: Not available

Parameters

pSilentMonitor

Valid pointer to a SilentMonitorManager object created via
CreateSilentMonitorManager.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

Supported for use with IPCC only.
8-13
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
DestroyWaitObject (C++ , Java, and .NET)
The DestroyWaitObject method removes the specified CWaitObject from the
Session and decrements its reference count.

Syntax

C++: void DestroyWaitObject(CWaitObject * pWaitObject)
Java: void DestroyWaitObject(WaitObject rWaitObj)
.NET: DestroyWaitObject(WaitObject rWaitObj)

Parameters

WaitObject

A pointer to the CWaitObject to be destroyed.

Return Values

None.

Remarks

For more information about CWaitObject see Chapter 12, “Helper Classes.”

DisableSkillGroupStatistics (C++ , Java, and .NET)
The DisableSkillGroupStatistics method requests that sending real-time statistics
to the session object be stopped.

Syntax

C++, Java:int DisableSkillGroupStatistics(Arguments & args)
.NET: CilError DisableSkillGroupStatistics(Arguments rArgs)
8-14
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
Parameters

args

This parameter has two required values for PeripheralId and SkillGroupNumber.
See the Remarks section for a code example.

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

C++ code example:

Arguments & argsStatBroadcast = Arguments::CreateInstance();
argsStatBroadcast.AddItem(CTIOS_SKILLGROUPNUMBER, intSG);
argsStatBroadcast.AddItem(CTIOS_PERIPHERALID, m_periphID);
m_pSkGrStatSession->DisableSkillGroupStatistics (argsStatBroadcast);
argsStatBroadcast.Release();

Disconnect
The Disconnect method disconnects the open connection to the CTI OS server. In
Java and .NET, you can use the Disconnect method to interrupt failover.

Syntax

C++: void Disconnect (Arguments& args);
COM: HRESULT Disconnect (/* [in, optional */ IArguments *args,
/*[out]*/ int * errorcode);
VB: Disconnect(args As CTIOSCLIENTLib.IArguments) As Long
Java: int Disconnect(Arguments args)
.NET: CilError Disconnect(Arguments rArgs)

Parameters

args
8-15
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
An optional arguments array containing the
CTIOS_FORCEDDISCONNECT keyword, which forces a disconnect even
if the Session object rejects the disconnect. This keyword should be added to
the array if the session mode has not yet been set by SetAgent or
SetSessionMode at the time of the disconnect.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”.

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

DumpProperties
See Chapter 7, “CtiOs Object” for a description of the DumpProperties method.

EnableSkillGroupStatistics (C++, Java, and .NET)
The EnableSkillGroupStatistics method requests that sending real-time statistics
to the session object be started.

Syntax

C++/Java:int EnableSkillGroupStatistics(Arguments & args)
.NET:CilError EnableSkillGroupStatistics(Arguments rArgs)

Parameters

args

This parameter has two required values for PeripheralId and SkillGroupNumber.
See the Remarks section for a code example.
8-16
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

C++ code example:

Arguments & argsStatBroadcast = Arguments::CreateInstance();
argsStatBroadcast.AddItem(CTIOS_SKILLGROUPNUMBER, intSG);
argsStatBroadcast.AddItem(CTIOS_PERIPHERALID, m_periphID);
m_pSkGrStatSession->EnableSkillGroupStatistics (argsStatBroadcast);
argsStatBroadcast.Release();

GetAllAgents
The GetAllAgents method returns an array of object IDs. Each object ID is
associated with an Agent object stored in the CIL.

The number of object IDs returned from this method depends on the number of
agents that the CIL has discovered through agent events. For example, a CIL used
in an agent desktop application returns one ID, which is the ID of the agent
currently logged into the desktop. A supervisor desktop returns the supervisor’s
ID as well as IDs for all agents on the supervisor’s team. A monitor mode
application filtering all agent events returns IDs for each agent known by the CTI
OS Server.

Syntax

C++: Arguments & GetAllAgents()
COM: HRESULT GetAllAgents(/*[out, retval]*/ VARIANT *args)
VB: GetAllAgents (args As VARIANT)
Java: Arguments GetAllAgents()
.NET: Arguments GetAllAgents()

Parameters

args

COM/VB: A pointer to a VARIANT containing a SAFEARRAY of pointers to
IAgents.
8-17
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
Return Values

COM/VB: Default CTI OS return values. See Chapter 3, “CIL Coding
Conventions.”

Java/.NET: Returns NULL if the value requested is not found or if there is an
error. If the method succeeds, it returns a pointer or a reference to an Arguments
array where each member has a string key that is the UniqueObjectID of an agent
and a value that is a reference to a CilRefArg that is a pointer to the agent object.

C++: An empty Arguments array if the value requested is not found or if there is
an error. If the method succeeds, it returns a pointer or a reference to an
Arguments array where each member has a string key that is the UniqueObjectID
of an agent and a value that is a reference to a CilRefArg that is a pointer to the
agent object.
8-18
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
Remarks

The following sample C++ code illustrates how to take the array returned from
GetAllAgents() and use it to access the corresponding agents in the CIL’s object
cache. The example uses the C++ CIL.

Arguments &args = m_pSession->GetAllAgents() ;

// Iterate through all of the CILRefArg objects
// in the Arguments array.
//
for (int i = 1 ; i <= args.NumElements() ; i++)
{
 CILRefArg *pRefArg = NULL ;

 // Retrieve the CILRefArg at each position in the
 // array.
 //
 if (args.GetElement(i, (Arg **)&pRefArg))
 {
 if (pRefArg != NULL)
 {
 // The value method will return a pointer
 // to the agent object referenced by the
 // CILRefArg.
 //
 CAgent *pAgent = (CAgent *)pRefArg->GetValue() ;

 cout << "-- Agent Properties --" << endl ;
 if (pAgent == NULL)
 {
 cout << "NULL" << endl ;
 }
 else
 {
 cout << pAgent->DumpProperties().c_str() << endl ;
 }
 cout << "--" << endl ;
 }
 }
}

8-19
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
The following sample VB.NET code illustrates how to take the array returned
from GetAllAgents() and use it to access the corresponding agents in the CIL’s
object cache. The example uses the .NET CIL.

Dim args As Arguments
args = m_session.GetAllAgents()

' Iterate through all of the CILRefArg objects
' in the Arguments array.
'
Dim i As Integer
For i = 1 To args.NumElements()

 Dim refArg As CilRefArg

 ' Retrieve the CILRefArg at each position in the
 ' array.
 '
 If (args.GetElement(i, refArg)) Then

 If ((refArg Is Nothing) = False) Then

 ' The value method will return a reference
 ' to the agent object referenced by the
 ' CILRefArg.
 '
 Dim agent As Agent
 refArg.GetValue(agent)

 Console.Out.WriteLine("--")

 If (agent Is Nothing) Then
 Console.Out.WriteLine("Nothing")
 Else
 Console.Out.WriteLine(agent.DumpProperties())
 End If

 Console.Out.WriteLine("--")

 End If

 End If
Next
8-20
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
GetAllCalls
The GetAllCalls method returns an array of object IDs. Each object ID is
associated with a Call object stored in the CIL.

The number of object IDs returned from this method depends on the number of
calls that the CIL has discovered through call events. For example, a CIL used in
an agent desktop application will return IDs for all calls in which the agent is
involved. A supervisor desktop returns IDs for any call in which the supervisor is
involved as well as IDs for monitored calls. A monitor mode application filtering
all call events returns IDs for each call known by the CTI OS Server.

Syntax

C++: Arguments & GetAllCalls()
COM HRESULT GetAllCalls(/*[out, retval]*/ VARIANT *args)
VB: GetAllCalls (args As VARIANT)
Java: Arguments GetAllCalls()
.NET: Arguments GetAllCalls()

Parameters

args

COM /VB: A pointer to a VARIANT containing a SAFEARRAY of pointers
to ICalls.

Return Values

COM/VB: Default CTI OS return values. See Chapter 3, “CIL Coding
Conventions.”

Java/.NET: Returns NULL if the value requested is not found or if there is an
error. If the method succeeds, it returns a pointer or a reference to an Arguments
array where each member has a string key that is the UniqueObjectID of a call and
a value that is a reference to a CilRefArg that is a pointer to the call object.
8-21
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
C++: An empty Arguments array if the value requested is not found or if there is
an error. If the method succeeds, it returns a pointer or a reference to an
Arguments array where each member has a string key that is the UniqueObjectID
of a call and a value that is a reference to a CilRefArg that is a pointer to the call
object.
8-22
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
Remarks

The following sample C++ code illustrates how to take the array returned from
GetAllCalls() and use it to access the corresponding calls in the CIL’s object
cache. The example uses the C++ CIL.

Arguments &args = m_pSession->GetAllCalls() ;

// Iterate through all of the CILRefArg objects
// in the Arguments array.
//
for (int i = 1 ; i <= args.NumElements() ; i++)
{
 CILRefArg *pRefArg = NULL ;

 // Retrieve the CILRefArg at each position in the
 // array.
 //
 if (args.GetElement(i, (Arg **)&pRefArg))
 {
 if (pRefArg != NULL)
 {
 // The value method will return a pointer
 // to the agent object referenced by the
 // CILRefArg.
 //
 CCall *pCall = (CCall *)pRefArg->GetValue() ;

 cout << "-- Call Properties --" << endl ;
 if (pCall == NULL)
 {
 cout << "NULL" << endl ;
 }
 else
 {
 cout << pCall->DumpProperties().c_str() << endl ;
 }
 cout << "--" << endl ;
 }
 }
}

8-23
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
The following sample VB.NET code illustrates how to take the array returned
from GetAllCalls() and use it to access the corresponding calls in the CIL’s object
cache. The example uses the .NET CIL.

Dim args As Arguments
args = m_session.GetAllCalls()

' Iterate through all of the CILRefArg objects
' in the Arguments array.
'
Dim i As Integer
For i = 1 To args.NumElements()

 Dim refArg As CilRefArg

 ' Retrieve the CILRefArg at each position in the
 ' array.
 '
 If (args.GetElement(i, refArg)) Then

 If ((refArg Is Nothing) = False) Then

 ' The value method will return a reference
 ' to the call object referenced by the
 ' CILRefArg.
 '
 Dim aCall As Cisco.CtiOs.Cil.Call
 refArg.GetValue(aCall)

 Console.Out.WriteLine("--")

 Dim str As String

 If (aCall Is Nothing) Then
 Console.Out.WriteLine("Nothing")
 Else
 Console.Out.WriteLine(aCall.DumpProperties())
 End If

 Console.Out.WriteLine("--")

 End If

 End If
Next
8-24
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
GetAllProperties
See Chapter 7, “CtiOs Object” for a description of the GetAllProperties method.

GetAllSkillGroups
The GetAllSkillGroups method returns an array of object IDs. Each object ID is
associated with a skill group stored in the CIL.

Syntax

C++: Arguments & GetAllSkillGroups()
COM: HRESULT GetAllSkillGroups(/*[out, retval]*/ VARIANT *args)
VB: GetAllSkillGroups (args As VARIANT)
Java , .NET: Arguments GetAllSkillGroups()

Parameters

args

C++, Java, and .NET: A pointer or a fereence to an Arguments array where
each member has a string key that is the UniqueObjectID of a skill group and
a value that is a reference to a CilRefArg that is a pointer to the skill group
object.

COM /VB: A pointer to a VARIANT containing a SAFEARRAY of pointers
to ISkillGroups.

Return Values

COM/VB: Default CTI OS return values. See Chapter 3, “CIL Coding
Conventions.”

Java/.NET: Returns NULL if the value requested is not found or if there is an
error. If the method succeeds, it returns a pointer or a reference to an Arguments
array where each member has a string key that is the UniqueObjectID of a skill
group and a value that is a reference to a CilRefArg that is a pointer to the skill
group object.
8-25
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
C++: An empty Arguments array if the value requested is not found or if there is
an error. If the method succeeds, it returns a pointer or a reference to an
Arguments array where each member has a string key that is the UniqueObjectID
of a skill group and a value that is a reference to a CilRefArg that is a pointer to
the skill group object.

GetCurrentAgent
The GetCurrentAgent method returns the Agent specified when the Agent Mode
connection was established. Use this method rather than
GetValue(“CurrentAgent”).

Syntax

C++: Agent* GetCurrentAgent()
COM: HRESULT GetCurrentAgent(/*[out, retval]*/ IAgent *agent)
VB: GetCurrentAgent () As CTIOSCLIENTLib.IAgent
Java,.NET: Agent GetCurrentAgent()

Parameters

agent

An output parameter (return value in VB, C++, Java, and .NET) containing a
pointer to a pointer to an IAgent that is the currently selected agent.

Return Values

COM: Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Others: A pointer or reference to an Agent that is the current agent. This method
returns NULL if the value requested is not found or if there is an error.

The C++, Java, and .NET versions of this method return NULL if the value
requested is not found or if there is an error.
8-26
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
GetCurrentCall
The GetCurrentCall method returns the call that is currently selected. This method
can be used as a way for controls to communicate between each other which call
is selected and therefore should be acted upon. Use this method rather than
GetValue(“CurrentCall”).

Syntax

C++: CCall * GetCurrentCall()
COM: HRESULT GetCurrentCall(/*[out, retval]*/ ICall ** call)
VB: GetCurrentCall () As CTIOSCLIENTLib.ICall
Java/.NET: Call GetCurrentCall()

Parameters

call

An output parameter (return value in VB, C++, Java, and .NET) containing a
pointer to a pointer to an ICall that is the currently selected call.

Return Values

COM: Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Others: A pointer or reference to a Call that is the current call. This method
returns NULL if the value requested is not found or if there is an error.

The C++, Java, and .NET versions of this method return NULL if the value
requested is not found or if there is an error.

GetCurrentSilentMonitor
The GetCurrentSilentMonitor method returns a pointer to the
SilentMonitorManager object instance that is set as the current manager in the
session object.
8-27
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
Syntax

C++: CSilentMonitorManager * GetCurrentSilentMonitor();
COM: HRESULT GetCurrentSilentMonitor (/*[out,retval]*/
ISilentMonitorManager ** pSilentMonitor);
VB: GetCurrentSilentMonitor () As CTIOSCLIENTLIB.
ISilentMonitorManager
Java,.NET: Not available

Return Values

Pointer to the current Silent Monitor Manager in the session object.

GetElement
See Chapter 7, “CtiOs Object” for a description of the GetElement method.

GetNumProperties
See Chapter 7, “CtiOs Object” for a description of the GetNumProperties method.

GetObjectFromObjectID
Given a string containing the UniqueObjectID of a call, an agent, or a skill group,
the GetObjectFromObjectID method returns a pointer to the associated object.

Syntax

C++: bool GetObjectFromObjectID (string& uniqueObjectID,
CCtiosObject ** object);

COM: HRESULT GetObjectFromObjectID (/*[in]*/ BSTR uniqueObjectID,
/*[out]*/ IDispatch ** object, /*[out, retval]*/ VARIANT_BOOL *
errorcode);
VB: GetObjectFromObjectID(uniqueObjectID As String, object as
IDispatch) As Boolean
Java: CtiOsObject GetObjectFromObjectID(java.lang.String sUID)
.NET: System.Boolean GetObjectFromObjectID(System.String sUID, out
CtiOsObject rObj)
8-28
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
Parameters

COM/C++/VB: uniqueObjectID

A string reference that contains the UniqueObjectID of the requested Call,
Agent, or Skillgroup object.

.NET: sUID

A string reference that contains the UniqueObjectID of the requested Call,
Agent, or Skillgroup object.

COM/C++: object

A pointer to either a CTIOSObject in C++ (which is a CILRefArg) or an
IDispatch * pointing to either an ICall, an IAgent, or an ISkillGroup in COM.

.NET: rObj

A pointer to either a CTIOSObject in C++ (which is a CILRefArg) or an
IDispatch * pointing to either an ICall, an IAgent, or an ISkillGroup in COM.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

COM: Default HRESULT return value. See Chapter 3, “CIL Coding
Conventions.”

C++, VB, .NET: A boolean indicating success or failure of the method.

The Java version of this method return NULL if the value requested is not found
or if there is an error.

Remarks

Many events use UniqueObjectIDs instead of the objects themselves. Use this
method to get the object if it is necessary for processing.
8-29
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
GetPropertyName
See Chapter 7, “CtiOs Object” for a description of the GetPropertyName method.

GetPropertyType
See Chapter 7, “CtiOs Object” for a description of the GetPropertyType method.

GetSystemStatus (Java, .NET, and C++ only)
The GetSystemStatus method returns the current system status bitmask.

Syntax

Java/C++: int GetSystemStatus()
.NET: SystemStatus GetSystemStatus()

Parameters

None.

Returns

The current system status bitmask. Refer to “OnQueryAgentStateConf” in
Chapter 6, “Event Interfaces and Events” for a description of the SystemStatus.

GetValue Methods
See Chapter 7, “CtiOs Object” for a description of the GetValue, GetValueArray,
GetValueInt, and GetValueString methods.
8-30
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
IsAgent
The IsAgent method determines whether the current agent is an agent rather than
a supervisor.

Syntax

C++: bool IsAgent()
COM: HRESULT IsAgent (VARIANT_BOOL *bIsAgent)
VB: IsAgent () As Boolean
Java: boolean IsAgent()
.NET: bool IsAgent()

Parameters

bIsAgent

Output parameter (return parameter in VB) that returns true if the current
AgentMode connection is for an agent and false if it is for a supervisor.

Return Values

If the current agent is an agent and not a supervisor it returns true, otherwise it
returns false.

IsSupervisor
The IsSupervisor method checks if the current agent is a supervisor.

Syntax

C++: bool IsSupervisor()
COM: HRESULT IsSupervisor (VARIANT_BOOL * bIsSupervisor)
VB: IsSupervisor () As Boolean
Java: boolean IsSupervisorMode()
.NET: bool IsSupervisorMode()
8-31
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
Parameters

bIsSupervisor

Output parameter (return parameter in VB) that returns true if the current
AgentMode connection is for a supervisor and false if it is for an agent.

Return Values

If the current agent is a supervisor it returns true, otherwise it returns false.

IsValid
See Chapter 7, “CtiOs Object” for a description of the IsValid method.

LogToServer
The LogToServer method logs a message into the CTI OS server log.

Syntax

C++: int LogToServer(Arguments & args);
COM: HRESULT LogToServer (/*[in]*/ IArguments * args,
/*[out,retval]*/ int * errorcode);
Java: int LogToServer(Arguments args)
.NET: CilError LogToServer(Arguments rArgs)

Parameters

args

Arguments array that contain the following parameters.

Table 8-4 LogToServer Arguments Array Parameters

Keyword Type Description
8-32
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

RemoveEventListener (Java and .NET)
The RemoveEventListener method unsubscribes a Java IGenericEvents object as
a listener from a particular subscriber list.

Syntax

int RemoveEventListener(IGenericEvents Listener, int iListID)

Parameters

Listener

The IGenericEvents object that is unsubscribing from events.

ListID

The ID of the subscriber list from which the Listener is to be removed.

Returns

A CtiOs_Enums.CilError code indicating success or failure.

TextMessage STRING Text of message to be logged to server

TraceMask INT Trace mask with which to trace the
text

Table 8-4 LogToServer Arguments Array Parameters
8-33
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
RemoveListener Methods (C++ only)
The RemoveListener methods unregisters the subscriber from a specified event
listener.

Syntax

int RemoveEventListener(Arguments & rArguments);
int RemoveSessionEventListener(ISessionEvents * pSessionEvents);
int RemoveCallEventListener(ICallEvents * pCallEvents);
int RemoveAgentEventListener(IAgentEvents * pAgentEvents);
int RemoveSkillGroupEventListener(ISkillGroupEvents *

pSkillGroupEvents);
int RemoveButtonEnablementEventListener(IButtonEnablementEvents *

pButtonEvents);
int RemoveAllInOneEventListener(IAllInOne * pAllInOneEvents);
int RemoveSilentMonitorEventListener(ISilentMonitorEvents *

pSilentMonitorEvents);
int RemoveSessionEventGenericListener(IGenericEvents *

pSessionEvents);
int RemoveCallEventGenericListener(IGenericEvents * pCallEvents);
int RemoveAgentEventGenericListener(IGenericEvents * pAgentEvents);
int RemoveSkillGroupEventGenericListener(IGenericEvents *

pSkillGroupEvents);
int RemoveButtonEnablementEventGenericListener(IGenericEvents *

pButtonEvents);
int RemoveAllInOneEventGenericListener(IGenericEvents *

pAllInOneEvents);
int RemoveSilentMonitorEventGenericListener(IGenericEvents *
pSilentMonitorEvents);

Remarks

See also the section “Subscribing for Events in C++” in Chapter 4, “Building
Your Application.”

RequestDesktopSettings
The RequestDesktopSettings method sends a request to the CTI OS Server to
download the configuration settings defined for a desktop application.
8-34
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
Syntax

C++: int RequestDesktopSettings(Arguments& args)
COM: HRESULT RequestDesktopSettings(/* [in] */ IArguments *args,
/*[out]*/ int * errorcode)
VB: RequestDesktopSettings (args As CTIOSCLIENTLib.IArguments) As Long
Java: int RequestDesktopSettings(int desktopType)
.NET: CilError RequestDesktopSettings(Arguments rArgs)

Parameters

args

C++, COM, VB, and .NET: Input parameter in the form of a pointer or
reference to an Arguments array containing one number. This number has a
keyword of “DesktopType” and an integer value that is either:

 – eAgentDesktop (0)

 – eSupervisorDesktop (1)

Java: desktopType

0 for agent

1 for supervisor

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

A successful RequestDesktopSettings request results in an
OnGlobalSettingsDownloadConf event. For detailed information about the
OnGlobalSettingsDownloadConf event, see “OnFailure Event” section on
page 6-8.
8-35
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
SetAgent
The SetAgent method assigns an agent to this Session object. The agent object
used as a parameter in this method should have the following properties set:

 • CTIOS_AGENTID

 • CTIOS_PERIPHERALID

Syntax

C++: int SetAgent(CAgent& agent)
COM: HRESULT SetAgent(/*[in]*/IAgent *agent, /*[out, retval]*/ int *
errorcode)
VB: SetAgent (agent As CTIOSCLIENTLib.IAgent) As Long
Java: int SetAgent(Agent agentObject)
.NET: CilError SetAgent(Agent NewAgent)

Parameters

agent

The agent to be assigned to the Session object.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

If the SetAgent request is successful, it returns a CIL_OK CtiOs_Enums.CilError
code and sends an OnSetAgentMode event to the client application.

In CTI OS Release 7.1(1) , the SetAgent request returns the following error codes:

 • CIL_FAIL - The request to authenticate failed. The SetAgent request will not
be sent.

 • E_CTIOS_SET_AGENT_SESSION_DISCONNECT_REQUIRED - You
attempted to execute SetAgent for a session in monitor mode. The SetAgent
request will not be sent. To correct, execute the Disconnect method to
disconnect the session, then execute the SetAgent method.
8-36
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
 • E_CTIOS_AGENT_ALREADY_IN_SESSION - You attempted to assign an
agent that has already been assigned to this session. The SetAgent request
will not be sent.

Note In the above error cases, the SetAgent request will not be sent to the CTI
OS server, and the client application will not receive any events in return.

 • CIL_OK - The SetAgent request was sent to the CTI OS server.

In Java only, if SetAgent () is called on a session where the current agent is different
from the agent that SetAgent is trying to set, the following occurs:

 • The CIL automatically does a Disconnect on the current session object to
Reset an agent.

 • An OnCloseConnection event is received.

 • A Connect is then performed.

 • An OnConnection event is received, and the new agent is set.

In Java only, if the SetAgent request is unsuccessful it returns one of the following
CtiOs_Enums.CilError codes:

 • E_CTIOS_INVALID_SESSION -- if session is not connected.

 • E_CTIOS_PROP_ATTRIBUTES_ACCESS_FAILED -- if unable to get the
connection mode property

 • E_CTIOS_SET_AGENT_SESSION_DISCONNECT_REQUIRED -- if
SetAgent request was during a Monitor Mode session. The client application
will need to call Disconnect first to clean up the connection mode and then
call Connect again.

 • E_CTIOS_AGENT_ALREADY_IN_SESSION -- if the agent is already
assigned to the session object. The client application will need to call
Disconnect first to clean up the connection mode and then call Connect again.

 • E_CTIOS_ARGUMENT_ALLOCATION_FAILED -- if the application is
unable to allocate memory.

 • E_CTIOS_PROP_ATTRIBUTES_ACCESS_FAILED -- if an error occurred
while accessing agent properties.
8-37
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
SetCurrentCall
The SetCurrentCall method assigns a call as the session’s current call.

Syntax

C++: int SetCurrentCall(CCall& call)
COM: HRESULT SetCurrentCall (/*{in]*/ICall *call, /*[out, retval]*/
errorcode
VB: SetCurrentCall (call As CTIOSCLIENTLib.ICall)
Java: int SetCurrentCall(Call callObject)
.NET: CilError SetCurrentCall(Call rCall)

Parameters

call

Call to assign as current call.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”.

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

A successful request results in an OnCurrentCallChanged event.

In Java and .NET, if the call object specified in the call parameter is already the
current call, the OnCurrentCallChanged event is not fired to the client application
and a E_CTIOS_CALL_ALREADY_CURRENT_IN_SESSION code is
returned.
8-38
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
SetCurrentSilentMonitor
The SetCurrentSilentMonitor method sets the SilentMonitorManager object
instance specified as the current manager in the CTI OS session object.

Syntax

C++: int SetCurrentSilentMonitor(CSilentMonitorManager *
pSilentMonitor);
COM: HRESULT SetCurrentSilentMonitor (/*[in]*/ ISilentMonitorManager
* pSilentMonitor, /*[out,retval]*/ int * errorcode);
VB: SetCurrentSilentMonitor (ByVal pSilentMonitor As
CTIOSCLIENTLIB. ISilentMonitorManager) As Long
Java: Not available
.NET: Not available

Parameters

pSilentMonitor

Valid pointer to a SilentMonitorManager object created via
CreateSilentMonitorManager

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

Supported for use with IPCC only.
8-39
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
SetMessageFilter
The SetMessageFilter method specifies a filter for CTI OS Server to use to
determine which events are sent to a monitor mode client.

Syntax

C++: int SetMessageFilter(string filter)
COM: HRESULT SetMessageFilter(/*{in]*/ BSTR filter, /*[out,
retval]*/ int* errorcode)
VB: SetMessageFilter (filter As String, retVal As Long)
Java: int SetMessageFilter(Arguments messageFilter)
.NET: CilError SetMessageFilter(Arguments rArgs)

Parameters

filter

A string containing the message filter, as explained in the section “Notes On
Message Filters”.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”.

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

The Session will receive an OnMonitorModeEstablished event when the filter is
set on the server.
8-40
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Methods
SetSupervisorMonitorMode
The SetSupervisorSilentMonitorMode method can be used to force supervisors into
monitored mode. It is used, for example, by the CTIOS Agent desktop to indicate that
supervisors logging on to the Agent Desktop can be monitored.

Syntax

C++: int SetSupervisorSilentMonitorMode (Arguments & args);
COM: HRESULT SetSupervisorSilentMonitorMode (/*[in]*/ IArguments *
args, /*[out,retval]*/ int * errorcode);
VB: SetSupervisorSilentMonitorMode (args As CTIOSCLIENTLib.IArguments);
Java/.NET: Not available

Parameters

args

Arguments array that contains the following parameters.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Table 8-5 SetSupervisorSilentMonitorMode Arguments Array Parameters

Keyword Type Description

CTIOS_SILENTMONITOR
FORCEMONITOREDMODE

INT One of the following values:

1 -- supervisors can be monitored

0 (default) -- supervisors are put in
monitoring mode and cannot be
monitored
8-41
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Notes On Message Filters
Notes On Message Filters
A message filter is a condition that an event must meet in order to be sent to the
client. It consists of a keyword/value pair, as explained in the following sections.

Message Filter Syntax
The CTI OS Server’s event filter mechanism enables the rapid creation of
powerful CTI integration applications. The event filter allows the developer to
create a custom event notification stream using a simple filter expression. The
filter expression is sent from the Client Interface Library (CIL) to the CTI OS
server to request an event stream. The CTI OS server’s event filter parses the filter
expression, and registers the CIL client for all events that match any of the filter’s
conditions.

To set a filter expression, the Session object’s SetMessageFilter() method is used:

‘put filter expression in here
Dim sFilterExpression As String

‘call SetMessageFilter
m_session.SetMesageFilter sFilterExpression

The general form for a filter expression is key=value.

A Simple Example
The most basic event filter is for all events for a specific agent. CTI OS uniquely
identifies an agent object by it’s UniqueObjectID (refer to CIL architecture
chapter for explanation of the UniqueObjectID). To establish an event stream for
a unique agent, the following syntax would be used:

sFilterExpression = “UniqueObjectID=agent.5000.22866”

In this example, the key is the UniqueObjectID, and the value is
agent.5000.22866. This is the same filter expression which is implicitly
created when a CIL client connects to CTI OS in Agent Mode.
8-42
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Notes On Message Filters
General Form of Filter Syntax
The event filter syntax can be expressed in the following general form:

key1=value1 [,value2, …] [; key2=valueA [,valueB, …] …]

In this form, the filter expression must start with a key name (key). Following the
key must be an equal sign (=), and at least one value (value1) must be specified.
Optionally, additional values (e.g. value2, …) for the same key might be
specified (optional parts of the expression are indicated with square brackets []).
This will be interpreted as a logical OR among all of the values specified for that
key, e.g. if any of those values is found, the condition will be satisfied.

For example, a filter expression with one key and multiple values might look like
the following:

sFilterExpression = “AgentID=22866, 22867, 22868”

The interpretation of this filter is to match on any event with AgentID of 22866,
22867, or 22868.

Combining Filters
Multiple filters expressions (as described above) can be combined to create more
complex expressions. The general form allows for any number of filters to be
concatenated using the semicolon (;), which produces a logical AND effect.

For example, a filter expression with multiple keys, each with multiple values
might look like the following:

sFilterExpression =
“AgentID=22866, 22867, 22868; SkillGroupNumber=20, 21”

The interpretation of this filter is to match on any event with AgentID of 22866,
22867, or 22868 and with SkillGroupNumber of 20 or 21.
8-43
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Notes On Message Filters
Filtering for Specific Events
One of the most powerful types of event filters for custom applications are filters
that work on specific events.

An example of such an application would be an “all agents” real time display,
listing the agent states of all known agents at the call center, using the
eAgentStateEvent to receive agent updates. To request specific events, use
the MessageID keyword, and the numeric value for the event ID that you wish
to receive:

‘ register for all eAgentStateEvents
sFilterExpression = “MessageID = 30”

It is also possible to obtain multiple specific events. For example, consider an all
calls real-time display application, using eCallBeginEvent and
eCallEndEvent to add or remove calls from a view:

‘ register for all eCallBeginEvents, eCallEndEvents
sFilterExpression = “MessageID = 23, 24”

Events Not Allowed In Filter Expressions

The following events cannot be used in filter expressions:

 • ePreLogoutEvent

 • ePostLogoutEvent

 • eOnConnection

 • eOnConnectionClosed

 • eOnConnectionFailure

 • eOnHeartbeat

 • eOnMissingHeartbeat

 • eOnCurrentCallChanged

 • eOnCurrentAgentReset

 • Events that are part of the IMonitoredAgentEvents interface or the
IMonitoredCallsInterface. This includes the following events:

 – eOnMonitoredAgentStateChange
8-44
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Notes On Message Filters
 – OnMonitoredAgentInfoEvent

 – OnMonitoredCallDeliveredEvent

 – OnMonitoredCallEstablishedEvent

 – OnMonitoredCallHeldEvent

 – OnMonitoredCallRetrievedEvent

 – OnMonitoredCallClearedEvent

 – OnMonitoredCallConnectionClearedEvent

 – OnMonitoredCallOriginatedEvent

 – OnMonitoredCallFailedEvent

 – OnMonitoredCallConferencedEvent

 – OnMonitoredCallTransferredEvent

 – OnMonitoredCallDivertedEvent

 – OnMonitoredCallServiceInitiatedEvent

 – OnMonitoredCallQueuedEvent

 – OnMonitoredCallTranslationRouteEvent

 – OnMonitoredCallBeginEvent

 – OnMonitoredCallEndEvent

 – OnMonitoredCallDataUpdateEvent

 – OnMonitoredCallReachedNetworkEvent

 – OnMonitoredCallDequeuedEvent

 – OnMonitoredAgentPrecallEvent

 – OnMonitoredAgentPrecallAbortEvent

To circumvent this restriction, use an equivalent message in the filter
expression (for example, OnAgentStateEvent instead of
OnMonitoredAgentStateChange) and check in the message handler for the
CTIOS_MONITORED parameter to be TRUE.

void CMyEventSink::OnAgentStateEvent(Arguments & argParams)

{

 if (argParams.IsValid(CTIOS_MONITORED) &&
argParams.GetValueBoolean(CTIOS_MONITORED))
8-45
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Notes On Message Filters
 {

 //Do process the event

 }

}

Filtering Skillgroup Statistics
One of the most common applications for a filter mode application is the
processing of only skill group statistics. For this purpose, the specialized filter
"FilterTarget=SkillGroupStats" is defined. When set, this filter indicates that the
CTI OS server should forward skill group statistics to the client application,
whether or not any agents are logged in.

After the filter is set, the client application needs to invoke the
EnableSkillGroupStatistics(...) method for each skill group that it is expecting to
receive statistic. To stop receiving statistics for a given skill group, the
application must invoke DisableSkillGroupStatistics

'register to receive skill group statistics
sFilterExpression=”FilterTarget=SkillGroupStats"
'call SetMessageFilter
m_session.SetMessageFilter sFilterExpression
'Enable statistics for skills 78,89 and 90 in peripheral 5004
Private Sub m_Session_OnMonitorModeEstablished(ByVal pArguments As

Arguments)
Dim m_Args = new Arguments
 'For Skill 78
 m_Args.AddItem "SkillGroupNumber",78
 m_Args.AddItem "PeripheralID",5004
 m_session.EnableSkillGroupStatistics m_Args
 'For Skill 89
 m_Args.Clear
 m_Args.AddItem "SkillGroupNumber",89
 m_Args.AddItem "PeripheralID",5004
 m_session.EnableSkillGroupStatistics m_Args
 'For Skill 90
 m_Args.Clear
 m_Args.AddItem "SkillGroupNumber",90
 m_Args.AddItem "PeripheralID",5004
 m_session.EnableSkillGroupStatistics m_Args
 'Don't need arguments any more
8-46
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Notes On Message Filters
 Set m_Arg = Nothing
End Sub
Private Sub MyObjectClass_OnCleanupApplication()

 Dim m_Args = new Arguments
 'For Skill 78
 m_Args.AddItem "SkillGroupNumber",78
 m_Args.AddItem "PeripheralID",5004
 m_session.DisableSkillGroupStatistics m_Args
 'For Skill 89
 m_Args.Clear
 m_Args.AddItem "SkillGroupNumber",89
 m_Args.AddItem "PeripheralID",5004
 m_session.DisableSkillGroupStatistics m_Args
 'For Skill 90
 m_Args.Clear
 m_Args.AddItem "SkillGroupNumber",90
 m_Args.AddItem "PeripheralID",5004
 m_session.DisableSkillGroupStatistics m_Args
 'Don't need arguments any more
 Set m_Arg = Nothing

End Sub
8-47
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 8 Session Object
Notes On Message Filters
8-48
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Ente

C H A P T E R 9

Agent Object

The Agent object provides developers using the CTI OS Client Interface Library
with an interface to Agent behavior. The Agent object exposes methods to
perform all agent behaviors, such as logging in and setting the agent’s state.

The object stores specific agent information as properties, including the AgentID,
AgentPassword, AgentInstrument, AgentExtension, and SkillGroup(s). When the
agent is logged into an ACD, the agent object receives updates through
AgentStateEvents and Agent Statistics updates.

The Agent object can be used in two different modes:

 • In Agent Mode, the application should create an Agent object and inform the
Session about the agent using Session.SetAgent().

 • In Monitor Mode, the client application sets a message filter, and if the event
stream involves events for Agent object(s), those objects will be dynamically
created at the CIL as needed.

Agent Object Properties
Table 9-1 lists the agent object properties.

Note The data type listed for each keyword is the standardized data type discussed in
the section “CTIOS CIL Data Types” in Chapter 3, “CIL Coding Conventions.”
See Table 3-1 for the appropriate language specific types for these keywords.
9-1
rprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Agent Object Properties
.
Table 9-1 Agent Properties

Keyword Type Description

AgentAvailability
Status

INT One of the following values:
UNKNOWN (-1), NOT AVAILABLE
(0), ICM AVAILABLE (1), or
APPLICATION AVAILABLE (2).

Agent CallMode INT A value that indicates the agent's call
mode. Valid values are call-by-call (3)
and nailed-up (4).

AgentExtension STRING* Extension associated by ACD to agent.

AgentID STRING* Can be set prior to Login or after
Logout.

AgentInstrument STRING* Instrument associated by ACD to agent.

AgentRemote
Number

STRING The phone number that the agent uses
for remote login.

AgentState SHORT One of the values in Table 6-2
representing the current state of the
associated agent.

ClassIdentifier INT Identifies the type of this object.

Extension STRING Extension associated by ACD to agent.

CurrentConnection
Profile

STRING The last selected agent connection
profile.

IsSupervisor INT Indicates whether this agent is a
supervisor.

LastError INT Last error code, if any. Otherwise this
value is 0.

PeripheralID INT ID of peripheral.

PeripheralType INT The type of the peripheral.
9-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Agent Statistics
*The CTI OS server imposes no restriction on the maximum length of this string.
However, such restrictions are generally imposed by your switch/ACD
and Cisco CTI Server. Consult the documentation for the switch/ACD or CTI
Server for information on length restrictions for this string.

Agent Statistics
Statistics can be accessed by first using GetValueArray on the Agent object to
obtain the “Statistics” arguments array and then using GetValueInt on the
“Statistics” arguments array to obtain the desired value:

' First get the statistics arguments
Dim args As Arguments
args = agent.GetValueArray (“Statistics”)

‘ Then get the desired statistics
Dim availTimeSession As Integer
Dim loggedOnTimeSession As Integer
availTimeSession = args.GetValueInt(“AvailTimeSession”)
bargeInCallsToday = args.GetValueInt(“BargeInCallsToday”)

Note Not all the statistics values listed in Table 9-2 are present in every system
configuration. Whether or not a particular statistic value is available
depends both on the protocol version of CTI Server with which CTI OS
connects and on the peripheral on which the agent resides.

SavedAgentID STRING On Spectrum, contains the user
provided data for the agent specified by
the AgentID property. On all other
switches, this property is identical to
the AgentID property.

Statistics ARGUMENTS An arguments array containing the
statistics listed in Table 9-2.

Table 9-1 Agent Properties (continued)

Keyword Type Description
9-3
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Agent Statistics
Table 9-2 Agent Statistics

Statistic Definition

AvailTime Session Total time, in seconds, the agent was in
the Available state for any skill group.

LoggedOnTime Session Total time, in seconds, the agent has been
logged on.

NotReadyTime Session Total time, in seconds, the agent was in
the Not Ready state for all skill groups.

ICMAvailable TimeSession Total time, in seconds, the agent was in
the ICM Available state.

RoutableTime Session Total time, in seconds, the agent was in
the Routable state for all skill groups.

AgentOutCalls Session Total number of completed outbound
ACD calls made by agent.

AgentOutCalls TalkTimeSession Total talk time, in seconds, for completed
outbound ACD calls handled by the agent.
The value includes the time spent from the
call being initiated by the agent to the time
the agent begins after call work for the
call. The time includes hold time
associated with the call.

AgentOutCalls Time Session Total handle time, in seconds, for
completed outbound ACD calls handled
by the agent. The value includes the time
spent from the call being initiated by the
agent to the time the agent completes after
call work time for the call. The time
includes hold time associated with the
call.

AgentOutCalls Held Session The total number of completed outbound
ACD calls the agent has placed on hold at
least once.

AgentOutCalls HeldTime Session Total number of seconds outbound ACD
calls were placed on hold.
9-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Agent Statistics
HandledCalls Session The number of inbound ACD calls
handled by the agent.

HandledCalls TalkTime Session Total talk time in seconds for Inbound
ACD calls counted as handled by the
agent. Includes hold time associated with
the call.

HandledCalls AfterCall
TimeSession

Total after call work time in seconds for
Inbound ACD calls counted as handled by
the agent.

HandledCalls Time Session Total handle time, in seconds, for inbound
ACD calls counted as handled by the
agent. The time spent from the call being
answered by the agent to the time the
agent completed after call work time for
the call. Includes hold time associated
with the call.

IncomingCalls Held Session The total number of completed inbound
ACD calls the agent placed on hold at least
once.

IncomingCalls HeldTime Session Total number of seconds completed
inbound ACD calls were placed on hold.

InternalCallsSession Number of internal calls initiated by the
agent.

InternalCalls TimeSession Number of seconds spent on internal calls
initiated by the agent.

InternalCalls RcvdSession Number of internal calls received by the
agent.

InternalCalls RcvdTime Session Number of seconds spent on internal calls
received by the agent.

InternalCalls HeldSession The total number of internal calls the
agent placed on hold at least once.

InternalCalls HeldTime Session Total number of seconds completed
internal calls were placed on hold.

Table 9-2 Agent Statistics (continued)

Statistic Definition
9-5
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Agent Statistics
AutoOutCalls Session Total number of AutoOut (predictive)
calls completed by the agent.

AutoOutCalls TalkTime Session Total talk time, in seconds, of AutoOut
(predictive) calls completed by the agent.
The value includes the time spent from the
call being initiated by the agent to the time
the agent begins after call work for the
call. The time includes hold time
associated with the call.

AutoOutCalls Time Session Total handle time, in seconds, for
AutoOut (predictive) calls completed by
the agent. The value includes the time
spent from the call being initiated by the
agent to the time the agent completes after
call work time for the call. The time
includes hold time associated with the
call.

AutoOutCalls Held Session The total number of completed AutoOut
(predictive) calls the agent has placed on
hold at least once.

AutoOutCalls HeldTime Session Total number of seconds AutoOut
(predictive) calls were placed on hold.

PreviewCalls Session Total number of outbound Preview calls
completed by the agent.

PreviewCalls TalkTime Session Total talk time, in seconds, of outbound
Preview calls completed by the agent. The
value includes the time spent from the call
being initiated by the agent to the time the
agent begins after call work for the call.
The time includes hold time associated
with the call.

Table 9-2 Agent Statistics (continued)

Statistic Definition
9-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Agent Statistics
PreviewCalls TimeSession Total handle time, in seconds, outbound
Preview calls completed by the agent. The
value includes the time spent from the call
being initiated by the agent to the time the
agent completes after call work time for
the call. The time includes hold time
associated with the call.

PreviewCalls HeldSession The total number of completed outbound
Preview calls the agent has placed on hold
at least once.

PreviewCalls HeldTime Session Total number of seconds outbound
Preview calls were placed on hold.

Reservation CallsSession Total number of agent reservation calls
completed by the agent.

Reservation CallsTalk TimeSession Total talk time, in seconds, of agent
reservation calls completed by the agent.
The value includes the time spent from the
call being initiated by the agent to the time
the agent begins after call work for the
call. The time includes hold time
associated with the call.

Reservation CallsTime Session Total handle time, in seconds, agent
reservation calls completed by the agent.
The value includes the time spent from the
call being initiated by the agent to the time
the agent completes after call work time
for the call. The time includes hold time
associated with the call.

Reservation CallsHeld Session The total number of completed agent
reservation calls the agent has placed on
hold at least once.

Reservation CallsHeld
TimeSession

Total number of seconds agent reservation
calls were placed on hold.

Table 9-2 Agent Statistics (continued)

Statistic Definition
9-7
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Agent Statistics
BargeInCalls Session Total number of supervisor call barge-ins
completed.

InterceptCalls Session Total number of supervisor call intercepts
completed.

MonitorCalls Session Total number of supervisor call monitors
completed.

WhisperCalls Session Total number of supervisor whisper calls
completed.

EmergencyCallsSession Total number of emergency calls .

AvailTimeToday Total time, in seconds, the agent was in
the Available state for any skill group.

LoggedOnTime Today Total time, in seconds, the agent has been
logged on.

NotReadyTime Today Total time, in seconds, the agent was in
the Not Ready state for all skill groups.

ICMAvailable TimeToday Total time, in seconds, the agent was in
the ICM Available state.

RoutableTime Today Total time, in seconds, the agent was in
the Routable state for all skill groups.

AgentOutCalls Today Total number of completed outbound
ACD calls made by agent.

AgentOutCalls TalkTime Today Total talk time, in seconds, for completed
outbound ACD calls handled by the agent.
The value includes the time spent from the
call being initiated by the agent to the time
the agent begins after call work for the
call. The time includes hold time
associated with the call.

Table 9-2 Agent Statistics (continued)

Statistic Definition
9-8
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Agent Statistics
AgentOutCalls Time Today Total handle time, in seconds, for
completed outbound ACD calls handled
by the agent. The value includes the time
spent from the call being initiated by the
agent to the time the agent completes after
call work time for the call. The time
includes hold time associated with the
call.

AgentOutCalls HeldToday The total number of completed outbound
ACD calls the agent has placed on hold at
least once.

AgentOutCalls HeldTime Today Total number of seconds outbound ACD
calls were placed on hold.

HandledCalls Today The number of inbound ACD calls
handled by the agent.

HandledCalls TalkTime Today Total talk time in seconds for Inbound
ACD calls counted as handled by the
agent. Includes hold time associated with
the call.

HandledCalls AfterCall
TimeToday

Total after call work time in seconds for
Inbound ACD calls counted as handled by
the agent.

HandledCalls TimeToday Total handle time, in seconds, for inbound
ACD calls counted as handled by the
agent. The time spent from the call being
answered by the agent to the time the
agent completed after call work time for
the call. Includes hold time associated
with the call.

IncomingCalls HeldToday The total number of completed inbound
ACD calls the agent placed on hold at least
once.

IncomingCalls HeldTime Today Total number of seconds completed
inbound ACD calls were placed on hold.

Table 9-2 Agent Statistics (continued)

Statistic Definition
9-9
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Agent Statistics
InternalCalls Today Number of internal calls initiated by the
agent.

InternalCalls TimeToday Number of seconds spent on internal calls
initiated by the agent.

InternalCalls RcvdToday Number of internal calls received by the
agent.

InternalCalls RcvdTime Today Number of seconds spent on internal calls
received by the agent.

InternalCalls HeldToday The total number of internal calls the
agent placed on hold at least once.

InternalCalls HeldTime Today Total number of seconds completed
internal calls were placed on hold.

AutoOutCalls Today Total number of AutoOut (predictive)
calls completed by the agent.

AutoOutCalls TalkTime Today Total talk time, in seconds, of AutoOut
(predictive) calls completed by the agent.
The value includes the time spent from the
call being initiated by the agent to the time
the agent begins after call work for the
call. The time includes hold time
associated with the call.

AutoOutCalls TimeToday Total handle time, in seconds, for
AutoOut (predictive) calls completed by
the agent. The value includes the time
spent from the call being initiated by the
agent to the time the agent completes after
call work time for the call. The time
includes hold time associated with the
call.

AutoOutCalls HeldToday The total number of completed AutoOut
(predictive) calls the agent has placed on
hold at least once.

Table 9-2 Agent Statistics (continued)

Statistic Definition
9-10
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Agent Statistics
AutoOutCalls HeldTime Today Total number of seconds AutoOut
(predictive) calls were placed on hold.

PreviewCalls Today Total number of outbound Preview calls
completed by the agent.

PreviewCalls TalkTimeToday Total talk time, in seconds, of outbound
Preview calls completed by the agent. The
value includes the time spent from the call
being initiated by the agent to the time the
agent begins after call work for the call.
The time includes hold time associated
with the call.

PreviewCalls TimeToday Total handle time, in seconds, outbound
Preview calls completed by the agent. The
value includes the time spent from the call
being initiated by the agent to the time the
agent completes after call work time for
the call. The time includes hold time
associated with the call.

PreviewCalls HeldToday The total number of completed outbound
Preview calls the agent has placed on hold
at least once.

PreviewCalls HeldTimeToday Total number of seconds outbound
Preview calls were placed on hold.

Reservation CallsToday Total number of agent reservation calls
completed by the agent.

Reservation CallsTalk TimeToday Total talk time, in seconds, of agent
reservation calls completed by the agent.
The value includes the time spent from the
call being initiated by the agent to the time
the agent begins after call work for the
call. The time includes hold time
associated with the call.

Table 9-2 Agent Statistics (continued)

Statistic Definition
9-11
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Agent Statistics
Reservation CallsTimeToday Total handle time, in seconds, agent
reservation calls completed by the agent.
The value includes the time spent from the
call being initiated by the agent to the time
the agent completes after call work time
for the call. The time includes hold time
associated with the call.

Reservation CallsHeldToday The total number of completed agent
reservation calls the agent has placed on
hold at least once.

Reservation CallsHeld
TimeToday

Total number of seconds agent reservation
calls were placed on hold.

BargeInCalls Today Total number of supervisor call barge-ins
completed.

InterceptCalls Today Total number of supervisor call intercepts
completed.

MonitorCalls Today Total number of supervisor call monitors
completed.

WhisperCalls Today Total number of supervisor whisper calls
completed.

EmergencyCalls Today Total number of emergency calls .

AvailTime Session Total time, in seconds, the agent was in
the Available state for any skill group.

LoggedOnTime Session Total time, in seconds, the agent has been
logged on.

NotReadyTime Session Total time, in seconds, the agent was in
the Not Ready state for all skill groups.

ICMAvailable TimeSession Total time, in seconds, the agent was in
the ICM Available state.

Table 9-2 Agent Statistics (continued)

Statistic Definition
9-12
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Methods
Table 9-3 lists the Agent object methods.

RoutableTime Session Total time, in seconds, the agent was in
the Routable state for all skill groups.

AgentOutCalls Session Total number of completed outbound
ACD calls made by agent.

Table 9-2 Agent Statistics (continued)

Statistic Definition

Table 9-3 Agent Object Methods

Method Description

DisableAgentStatistics Disables agent statistic messages.

DisableSkillGroupStatistics Disables skill group statistic messages.

DumpProperties See Chapter 7, “CtiOs Object.”

EnableAgentStatistics Enables agent statistic messages.

EnableSkillGroupStatistics Enables skill group statistic messages.

GetAgentState Returns the current agent state.

GetAllProperties See Chapter 7, “CtiOs Object.”

GetElement See Chapter 7, “CtiOs Object.”

GetMonitoredAgent Returns the agent object that is currently
being monitored.

GetMonitoredCall Returns the call object that is currently
being monitored.

GetNumProperties See Chapter 7, “CtiOs Object.”

GetPropertyName See Chapter 7, “CtiOs Object.”

GetPropertyType See Chapter 7, “CtiOs Object.”

GetSkillGroups Returns an array of SkillGroups objects

GetValue See Chapter 7, “CtiOs Object.”
9-13
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
GetValueArray See Chapter 7, “CtiOs Object.”

GetValueInt See Chapter 7, “CtiOs Object.”

GetValueString See Chapter 7, “CtiOs Object.”

IsAgent Checks the current mode and returns true
if agent mode.

IsSupervisor Checks the current mode and returns true
if supervisor mode.

IsValid See Chapter 7, “CtiOs Object.”

Login Logs an agent into the ACD.

Logout Logs an agent out of the ACD.

MakeCall Initiates a call to a device or agent

MakeEmergencyCall Lets an agent makes an emergency call to
the supervisor.

QueryAgentState Gets the current agent state from CTI
Server and retrieves it.

ReportBadCallLine Informs the CTI OS Server of a bad line.

RequestAgentTeamList Retrieves the current agent team list.

RequestSupervisorAssist Allows the agent to call an available
supervisor for assistance.

SendChatMessage Send asynchronous messages between
CTI clients

SetAgentState Requests a new agent state.

SetValue Sets the value of the property whose name
is specified.

StartMonitoringAgent Enables monitoring of a specified agent.

StartMonitoringAgentTeam Enables monitoring of a specified agent
team.

StartMonitoringAllAgentTeams Enables monitoring of all agent teams.

Table 9-3 Agent Object Methods (continued)

Method Description
9-14
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Arguments Parameters
The following rules apply to the optional_args and reserved_args parameters in
Call Object methods:

 • In VB, you can ignore these parameters altogether. For example, you can treat
the line:

Answer([reserved_args As IArguments]) As Long

as follows:

Answer()

 • To ignore these parameters in COM you must send a NULL, as shown:

Answer (NULL)

DisableAgentStatistics
The DisableAgentStatistics method is sent by an agent to request that real-time
statistics stop being sent to that agent.

Syntax

C++:int DisableAgentStatistics (Arguments& reserved_args)

StartMonitoringCall Enables monitoring of a specified call
object.

StopMonitoringAgent Disables monitoring of a specified agent.

StopMonitoringAgentTeam Disables monitoring of a specified agent
team.

StopMonitoringAllAgentTeams Disables monitoring of all agent teams.

SuperviseCall Enables monitoring a call of an agent on
your team.

Table 9-3 Agent Object Methods (continued)

Method Description
9-15
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
COM:HRESULT DisableAgentStatistics (/*[in]*/ IArguments
reserved_args, /* [out, retval]*/ int * errorcode)
VB: DisableAgentStatistics (reserved_args As
CTIOSCLIENTLib.IArguments) As Long
Java:int DisableAgentStatistics (Arguments reservedargs)
.NET:CilError DisableAgentStatistics(Arguments args)

Parameters

.NET:args

Not currently used, reserved for future use.

All Others:reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

DisableSkillGroupStatistics
The DisableSkillGroupStatistics method is sent by an agent to request that
real-time statistics stop being sent to that agent.

Syntax

C++:int DisableSkillGroupStatistics (Arguments& optional_args)
COM:HRESULT DisableSkillGroupStatistics (/* [in, optional]*/
IArguments * optional_args, /* [out, retval]*/ int * errorcode)
VB: DisableSkillGroupStatistics (optional_args As
CTIOSCLIENTLib.IArguments) As Long
Java:int DisableSkillGroupStatistics (Arguments optional_args
.NET:CilError DisableSkillGroupStatistics(Arguments args)
9-16
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Parameters

optional_args

An optional input parameter containing a pointer or a reference to an
Arguments array containing a member that is a nested Arguments array with
the keyword “SkillGroupNumbers”. Within this array, each number has a
string key of an integer starting with “1” and an integer value that is a
SkillGroupNumber to be disabled. If the parameter is NULL or missing,
statistics will be disabled for all skill groups to which the agent belongs.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

EnableAgentStatistics
The EnableAgentStatistics method is sent by an agent to request that real-time
statistics be sent to that agent.

Syntax

C++: int EnableAgentStatistics(Arguments& reserved_args)
COM: HRESULT EnableAgentStatistics (/*[in]*/ IArguments*
reserved_args, /* [out, retval]*/ int * errorcode)
VB: EnableAgentStatistics (reserved_args As
CTIOSCLIENTLib.IArguments) As Long
Java:int EnableAgentStatistics(Arguments args)
.NET:CilError EnableAgentStatistics(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.
9-17
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Java/.NET:args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

The CTI OS server sends agent statistics in an OnAgentStatistics event. See
theOnAgentStatistics section in Chapter 6, “Event Interfaces and Events”for an
explanation of the PollingIntervalSec and PollForAgentStatsAtEndCall registry
settings and how these settings affect the refresh rate of agent statistics.

EnableSkillGroupStatistics
The EnableSkillGroupStatistics method is sent by an agent to request that
real-time statistics be sent to that agent.

Syntax

C++:int EnableSkillGroupStatistics (Arguments& optional_args)
COM: HRESULT EnableSkillGroupStatistics (/*[in]*/ IArguments *
optional_args, /* [out, retval]*/ int * errorcode)
VB: EnableSkillGroupStatistics (optional_args As
CTIOSCLIENTLib.IArguments) As Long
Java:int EnableSkillGroupStatistics(Arguments optional_args)
.NET:CilError EnableSkillGroupStatistics(Arguments args)

Parameters

optional_args
9-18
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
An optional input parameter containing a pointer or a reference to an
Arguments array containing a member that is a nested Arguments array with
the keyword SkillGroupNumbers. Within this array, each member has a string
key of an integer starting with 1 and an integer value that is a skill group
number to be enabled. If the parameter is NULL or missing, statistics will be
enabled for all skill groups to which the agent belongs.

.NET:args

Refer to the description for optional_args above.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

The CTIOS server sends SkillGroup statistics in the
OnSkillGroupStatisticsUpdated event of the SkillGroup object.

GetAgentState
The GetAgentState method returns the current state of the agent.

Syntax

C++: enumCTIOS_AgentState GetAgentState()
COM: HRESULT GetAgentState (/*[in]*/ long *state)
VB: GetAgentState () As Long
Java: int GetAgentState()
.NET: AgentState GetAgentState()

Parameters

state
9-19
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Output parameter (return parameter in VB) containing the current agent state
in the form of one of the values in Table 6-2.

Return Value

For C++, VB, Java, and .NET, this method returns the current state of the agent.

GetAllProperties
See Chapter 7, “CtiOs Object” for a description of the GetAllProperties method.

GetElement
See Chapter 7, “CtiOs Object” for a description of the GetElement method.

GetMonitoredAgent
The GetMonitoredAgent method returns the agent object that is currently being
monitored.

Syntax

C++:CAgent* GetMonitoredAgent()
COM:HRESULT GetMonitoredAgent (/*[out, retval]*/IAgent **agent)
VB: GetMonitoredAgent () As CTIOSCLIENTLib.IAgent
Java:Agent GetMonitoredAgent()
.NET:Agent GetMonitoredAgent()

Parameters

agent

Output parameter (return parameter in VB) that contains a pointer to a pointer
to an Agent object containing the currently monitored agent.
9-20
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Return Value

This method returns the current monitored agent. The C++, Java, and .NET
versions return null if no agent is currently being monitored.

Remarks

Supported for use with IPCC only.

GetMonitoredCall
The GetMonitoredCall method returns the call object that is currently being
monitored.

Syntax

C++: CCall* GetMonitoredCall()
COM: HRESULT GetMonitoredCall (/*[out, retval]*/ICall **call)
VB: GetMonitoredCall () As CTIOSCLIENTLib.ICall
Java: Call GetMonitoredCall()
.NET: Call GetMonitoredCall()

Parameters

call

Output parameter (return parameter in VB) that contains a pointer to a pointer
to a Call object containing the currently monitored call.

Return Value

This method returns the current monitored call. The C++, Java, and .NET versions
return null if no call is currently being monitored.

Remarks

Supported for use with IPCC only.
9-21
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
GetNumProperties
See Chapter 7, “CtiOs Object” for a description of the GetNumProperties method.

GetPropertyName
See Chapter 7, “CtiOs Object” for a description of the GetNumProperties method.

GetPropertyType
See Chapter 7, “CtiOs Object” for a description of the GetNumProperties method.

GetSkillGroups
If skillgroupstats is enabled, the GetSkillGroups method allows a client to retrieve
a list that contains references to all the skill group objects to which the agent belongs.
To retrieve skill groups without enabling skill group statistics, turn off agent event
minimization by setting its value to 0 on the CTIOS server in the registry key, for
example:

HKLM\SOFTWARE\Cisco
Systems,Inc.\Ctios\<Customer-Instancename>\CTIOS1\Server\Agent\Minimize
AgentStateEvents

Turning off even minimization makes skill group information available on the
agent state change event. The following code example shows how to access the
skill group properties of the agent object:

 Log m_Agent.DumpProperties

 Dim i As Integer

 For i = 1 To 20
 If m_Agent.IsValid("SkillGroup[" & i & "]") Then
 Set argskills = m_Agent.GetValueArray("SkillGroup[" & i & "]")
 Log "SkillGroup[" & i & "]:" & argskills.DumpArgs
 Else
 Log "SkillGroup[" & i & "] args doesnt exist"
 End If
 Next i
9-22
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Syntax

C++: Arguments & GetSkillGroups();
COM: HRESULT GetSkillGroups (/*[out,retval]*/ VARIANT *
pVariantArgs);
VB: GetSkillGroups () As Variant
Java: Arguments GetSkillGroups()
.NET: Arguments GetSkillGroups()

Parameters

None.

Return Value

This method returns -1 if skillgroupstats is not enabled.

C++

In C++ the GetSkillGroups method returns an arguments array containing
references to CSkillGroup objects.

Each element in the returned arguments array consists of a key/value pair, in
which the element key is the Unique Object Id of the skill group object and the
value is a reference to a CILRefArg object instance that contains the actual
reference to a CSkillGroup object. To retrieve a reference to a skill group object,
you need to do something similar to what is shown in the following code example.

Arguments & arSkills = m_Agent->GetSkillGroups();

if(Arguments::IsValidReference(arSkills)){
 for(int nI = 1; nI <= arSkills.NumElements(); nI ++){
 string strUOID = arSkills.GetElementKey(nI);

 CilRefArg & pRefArg = (CilRefArg &)
arSkills.GetValue(strUOID);

 if(Arg::IsValidReference(*pRefArg)){
 CSkillGroup * pSkill = pRefArg->GetValue();
 pRefArg->Release();

 cout << “Skill Object (“ << strUOID << “) ;
 cout << “ Skill Group Number: ” << ;

pSkill->GetValueInt(CTIOS_SKILLGROUPNUMBER);

 }
9-23
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
}

COM

In COM the GetSkillGroups method returns a pointer to a variant that
encapsulates a Safearray where each element is a pointer to an ISkillGroup object.

To retrieve references to skill group objects you need to do something similar to
what is shown in the following code example.

HRESULT hr = S_OK;
VARIANT varSkills;

VariantInit(&varSkills)

hr = m_Agent->GetSkillGroups(&varSkills);

if(SUCCEDED(hr)){
 if(varSkills.vt == (VT_ARRAY | VT_DISPATCH)){
 long lNumElements = 0;

 SafeArrayGetUBound(varSkills.parray,1,&lNumElements);

 for(long nI = 0; nI < lNumElements; nI ++){
 ISkillGroup * pSkill= NULL;
 hr=SafeArrayGetElement(varSkills.parray,&nI,&pSkill);
 if(SUCCEDED(hr)){
 int nSkillGrpNumber = 0;
 VARIANT vPropKey;
 VariantInit(&vPropKey);
 vPropKey.vt = VT_BSTR;
 vPropKey.bstr = OLESTR(“SkillGroupNumber”);
 pSkill->GetValueInt(vPropKey,&nSkillGrpNumber);
 pSkill->Release();
 VariantClear(&vPropKey);
 }
 }
 }
}

VB

In VB the GetSkillGroups method returns a variant array where each element is a
reference to a CTIOSClientLib.SkillGroup object.

To retrieve references to skill group objects you need to do something similar to
what is shown in the following code example.
9-24
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Dim obSkill As CTIOSClientLib.SkillGroup
Dim arSkills As Variant
 Dim lNumElements as Long

 arSkills = m_Agent.GetSkillGroups()
 lNumElements = UBound(arSkills,1)
 For nI = 0 to lNumElements
 Set obSkill = arSkills(nI)
 Print “SkillGroup” &
obSkill.GetValueString(CStr(“UniqueObjectId”)) & _
 “Skill Group Number: “ &
obSkill.GetValueInt(CStr(“SkillGroupNumber”))
 Next
 End For

GetValue Methods
See Chapter 7, “CtiOs Object.” for descriptions of the GetValue, GetValueInt,
GetValueArray, and GetValueString methods.

IsAgent
The IsAgent method determines whether the AgentMode connection is for an
agent rather than a supervisor.

Syntax

C++: bool IsAgent()
COM: HRESULT IsAgent (VARIANT_BOOL *bIsAgent)
VB: IsAgent () As Boolean
Java: boolean IsAgent()
.NET: bool IsAgent()

Parameters

IsAgent

Output parameter (return parameter in VB) that returns true if the current
AgentMode connection is for an agent and false if it is for a supervisor.
9-25
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Return Value

Returns true if the current AgentMode connection is for an agent and false if the
connection is for a supervisor.

IsSupervisor
The IsSupervisor method determines whether the AgentMode connection is for a
supervisor.

Syntax

C++: bool IsSupervisor()
COM: HRESULT IsSupervisor (VARIANT_BOOL * bIsSupervisor)
VB: IsSupervisor () As Boolean
Java: boolean IsSupervisorMode()
.NET: bool IsSupervisor()

Parameters

bIsSupervisor

Output parameter (return parameter in VB) that returns true if the current
AgentMode connection is for a supervisor and false if it is for an agent.

Return Values

If the current session is for a supervisor, this method returns true. Otherwise the
method returns false.

Login
The Login method performs a login to the ACD (if supported). Generally, the
minimum parameters required to log into an ACD are AgentID and
AgentInstrument. Often, based on customer configuration, the minimum
9-26
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
requirements include an ACD password (AgentPassword). Some switches require
PositionID in place of (or in addition to) AgentInstrument. Optional arguments
include Extension or AgentWorkMode.

Syntax

C++: virtual int Login(Arguments & args);
COM: HRESULT Login (/*[in]*/ IArguments * pVariantArgs, /*[out]*/
int * errorcode);
VB: Login (args As CTIOSCLIENTLib.IArguments) As Long
Java: int Login(Arguments args)
.NET: CilError Login(Arguments args)

Input Parameters

args

Arguments array that contains the login parameters listed in Table 9-4.

Table 9-4 Login Parameters

Keyword Type Description

AgentID (required)** STRING* The agent’s login ID.

AgentInstrument STRING* The agent’s instrument number.

LoginName
(required)**

STRING The agent’s login name.

PositionID STRING* Required for Alcatel only.

AgentExtension STRING* The agent’s teleset extension. Optional if
AgentInstrument is provided.

AgentPassword
(optional)

STRING* The agent’s password.

AgentWorkMode
(optional)

INT A value representing the desired work
mode of the agent. Used by Avaya
DEFINITY ECS with default value of
ManualIn.

NumSkillGroups
(optional)

INT The number of Skill Groups that the agent
is currently associated with, up to a
maximum of 20.
9-27
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
*The CTI OS server imposes no restriction on the maximum length of this string.
However, such restrictions are generally imposed by your switch/ACD and Cisco
CTI Server. Consult the documentation for the switch/ACD or CTI Server for
information on length restrictions for this string.

** Either AgentID or LoginName is required.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

If the Login request is successful, it returns a CIL_OK CtiOs_Enums.CilError
code In addition, the requesting client should expect an AgentStateChange event
if the request is successful with an Arguments member with keyword
“AgentState” and value of the agent’s current state. (See GetAgentState for
possible values.)

PeripheralID
(optional)

INT The ICM Peripheral ID of the ACD the
agent is attached to.

SkillGroupNumber
(optional)

INT The number of an agent skill group
associated with the agent.

SkillGroupPriority
(optional)

INT The priority of an agent skill group
associated with the agent.

Agent CallMode INT A value that indicates the agent's call
mode. Valid values are call-by-call (3)
and nailed-up (4).

AgentRemote
Number

STRING The phone number that the agent uses for
remote login.

Table 9-4 Login Parameters (continued)

Keyword Type Description
9-28
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
If the Login request is unsuccessful, the client will receive an
OnControlFailureConf event and the request will return one of the following
CtiOs_Enums.CilError codes:

 • E_CTIOS_INVALID_SESSION -- either the agent is not associated with the
session or the session is not connected.

 • E_CTIOS_INVALID_ARGUMENT -- null or invalid arguments were
provided.

 • E_CTIOS_LOGIN_INCONSISTENT_ARGUMENTS -- Login request
argument values for AgentId and/or PeripheralID do not match the values that
were set by SetAgent() prior to the Login request.

Logout
The Logout method logs the agent out of the ACD. If the ACD configuration
requires or supports other parameters, these can be passed in as logout parameters.
Examples are AgentPassword (required by Alcatel for Logout) or logout reason
codes (supported on Avaya Definity ECS, IPCC).

Syntax

C++: int Logout (Arguments& args)
COM: HRESULT Logout (/*[in]*/ IArguments args, /*[out,retval]*/ int
* errorcode)
VB: Logout (args As CTIOSCLIENTLib.IArguments) As Long
Java: int Logout(Arguments args)
.NET: CilError Logout(Arguments args)

Input Parameters

args

Input parameter in the form of an Arguments array that contains the Logout
parameters listed in Table 9-5.
9-29
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
*The CTI OS server imposes no restriction on the maximum length of this string.
However, such restrictions are generally imposed by your switch/ACD
and Cisco CTI Server. Consult the documentation for the switch/ACD or CTI
Server for information on length restrictions for this string.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Table 9-5 Logout Parameters

Keyword Type Description

EventReasonCode INT Reason for logging out. Required for
IPCC, optional for all other switches.

AgentPassword
(optional)

STRING* The agent’s password.

NumSkillGroups
(optional)

INT The number of Skill Groups that the agent
is currently associated with, up to a
maximum of 20.

SkillGroupNumber
(optional)

INT The number of an agent skill group
associated with the agent.

SkillGroupPriority
(optional)

INT The priority of an agent skill group
associated with the agent.

AgentID (optional) STRING* The agent’s login ID.

AgentInstrument STRING* The agent’s instrument number.

PeripheralID
(optional)

INT The ICM Peripheral ID of the ACD the
agent is attached to.
9-30
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Remarks

If the request is successful, the client should receive an OnAgentStateChange
event with an Arguments member with keyword “AgentState” and value eLogout.
If it is unsuccessful, the client should receive an OnControlFailureConf event.
The client should also receive an OnPreLogout event before the
OnAgentStateChange event, and an OnPostLogout event afterwards.

MakeCall
The MakeCall method initiates a call to a device or agent. The simplest form of
the request requires only a DialedNumber.

Syntax

C++: int MakeCall (Arguments& args)
COM: HRESULT MakeCall (/*[in]*/ IArguments *args, /*[out,retval]*/
int * errorcode)
VB: MakeCall (args As CTIOSCLIENTLib.IArguments) As Long
Java: int MakeCall(Arguments args)
.NET: CilError MakeCall(Arguments args)

Input Parameters

args

Input parameter in the form of an Arguments array that contains the MakeCall
parameters listed in Table 9-6.

Table 9-6 MakeCall Parameters

Keyword Type Description

DialedNumber (required) STRING,
maximum
length 40

The number to be dialed to
establish the new call.

PeripheralID (optional) INT The ICM Peripheral ID of the
ACD the agent is attached to.

AgentInstrument (optional) STRING* The agent’s instrument number.
9-31
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
CallPlacementType
(optional)

STRING,
maximum
length 40

A value specifying how the call
is to be placed identified in
Table 9-7.

CallMannerType (optional) INT A value specifying additional
call processing options
identified in Table 9-8.

AlertRings (optional) INT The maximum amount of time
that the call’s destination will
remain alerting, specified as an
approximate number of rings. A
zero value indicates that the
peripheral default (typically 10
rings) should be used.

CallOption (optional) INT A value from Table 9-9
specifying additional
peripheral-specific call options.

FacilityType (optional) INT A value from Table 9-10
indicating the type of facility to
be used.

AnsweringMachine
(optional)

INT A value from Table 9-11
specifying the action to be taken
if the call is answered by an
answering machine.

Priority (optional) BOOL This field should be set to TRUE
if the call should receive priority
handling.

PostRoute (optional) BOOL When this field is set to TRUE,
the Post-Routing capabilities of
the ICM are to be used to
determine the new call
destination.

UserToUserInfo (optional) STRING,
maximum
length 40

The ISDN user-to-user
information.

Table 9-6 MakeCall Parameters (continued)

Keyword Type Description
9-32
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
CallVariable1 (optional) STRING,
maximum
length 40

Call variable data that should be
set in the new call in place of the
corresponding data in the active
call.

...

CallVariable10 (optional)

ECC (optional) ARGUMENTS ECC data that should be set in
the new call in place of the
corresponding data in the active
call.

CallWrapupData (optional) STRING,
maximum
length 40

Call-related wrapup data.

FacilityCode (optional) STRING,
maximum
length 40

A trunk access code, split
extension, or other data needed
to access the chosen facility.

AuthorizationCode
(optional)

STRING,
maximum
length 40

An authorization code needed to
access the resources required to
initiate the call.

AccountCode (optional) STRING,
maximum
length 40

A cost-accounting or client
number used by the peripheral
for charge-back purposes.

Table 9-7 CallPlacementType Values

CallPlacementType Description Value

CPT_UNSPECIFIED Use default call placement. 0

CPT_LINE_CALL An inside line call. 1

CPT_OUTBOUND An outbound call. 2

CPT_OUTBOUND_NO_
ACCESS_CODE

An outbound call that will not
require an access code.

3

Table 9-6 MakeCall Parameters (continued)

Keyword Type Description
9-33
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
*The CTI OS server imposes no restriction on the maximum length of this string.
However, such restrictions are generally imposed by your switch/ACD
and Cisco CTI Server. Consult the documentation for the switch/ACD or CTI
Server for information on length restrictions for this string.

CPT_DIRECT_POSITION A call placed directly to a specific
position.

4

CPT_DIRECT_AGENT A call placed directly to a specific
agent.

5

CPT_SUPERVISOR_ASSIST A call placed to a supervisor for call
handling assistance.

6

Table 9-7 CallPlacementType Values (continued)

CallPlacementType Description Value

Table 9-8 CallMannerType Values

CallMannerType Description Value

CMT_UNSPECIFIED Use default call manner. 0

CMT_POLITE Attempt the call only if the originating
device is idle.

1

CMT_BELLIGERENT The call should always be attempted,
disconnecting any currently active call.

2

CMT_SEMI_POLITE Attempt the call only if the originating
device is idle or is receiving dial tone.

3

Table 9-9 CallOption Values

CallOption Description Value

COPT_UNSPECIFIED No call options specified, use defaults. 0

COPT_CALLING_
AGENT_ONLINE

Attempt the call only if the calling agent is
“online” (available to interact with the
destination party).

1

9-34
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
COPT_CALLING_
AGENT_RESERVED

Attempt the call only if ACDNR on the
calling agent’s set is activated (DMS-100).

2

COPT_CALLING_
AGENT_NOT_
RESERVED

Attempt the call only if ACDNR on the
calling agent’s set is not activated
(DMS-100).

3

COPT_CALLING_
AGENT_BUZZ_BASE

Causes a buzz to be applied to the base of the
telephone set as the call is initiated
(DMS-100).

4

COPT_CALLING_
AGENT_BEEP_HSET

Causes a tone to be applied to the agent
headset as the call is initiated (DMS-100).

5

COPT_SERVICE_
CIRCUIT_ON

Causes a call classifier to be applied to the
call (DEFINITY ECS)

6

Table 9-10 FacilityType Values

FacilityType Description Value

FT_UNSPECIFIED Use default facility type. 0

FT_TRUNK_GROUP Facility is a trunk group. 1

FT_SKILL_GROUP Facility is a skill group or split. 2

Table 9-11 AnsweringMachine Values

AnsweringMachine Description Value

AM_UNSPECIFIED Use default behavior. 0

AM_CONNECT Connect call to agent when call is
answered by an answering machine.

1

AM_DISCONNECT Disconnect call when call is answered by
an answering machine.

2

AM_NONE Do not use answering machine detection. 3

Table 9-9 CallOption Values (continued)
9-35
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

If the request is successful, the client should receive one or more of the following
call related events:

 • OnCallBegin

 • OnCallDelivered

 • OnServiceInitiated

 • OnCallOriginated

 • OnCallReachedNetwork

If the request is unsuccessful, the client should receive an OnControlFailureConf
event.

MakeEmergencyCall
The MakeEmergencyCall method makes an emergency call to the Agent’s
supervisor.

AM_NONE_NO_
MODEM

Do not use answering machine detection,
but disconnect call if answered by a
modem.

4

AM_CONNECT_NO_
MODEM

Connect call when call is answered by an
answering machine, disconnect call if
answered by a modem.

5

Table 9-11 AnsweringMachine Values (continued)

AnsweringMachine Description Value
9-36
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Syntax

C++: int MakeEmergencyCall ()
int MakeEmergencyCall (Arguments& reserved_args)

COM: HRESULT MakeEmergencyCall (/*[in, optional]*/ IArguments
reserved_args, /* [out, retval]*/ int * errorcode)
VB: MakeEmergencyCall () As Long

MakeEmergencyCall (reserved_args As CTIOSCLIENTLib.IArguments) As
Long
Java: int MakeEmergencyCall (Arguments args)
.NET: CilError MakeEmergencyCall(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

Java/.NET: args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

The MakeEmergencyCall request is very similar to the RequestSupervisorAssist
request in the following two ways:

 • Both requests place a call from the requesting agent to a supervisor and are
routed employing the same script. A typical script might attempt to route the
call to the primary supervisor first (if logged in and in available state) and,
failing that, to route the call to a skillgroup that all supervisors belong to.
9-37
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
 • Both call requests can be configured through ICM Agent Desk Settings to be
performed via a single step conference or consult call. If the consult method
is chosen, the agent can complete the established consult call as a transfer or
conference.

However, these two requests have the following important differences:

 • Only Emergency calls are able to be recorded, if so configured in the ICM
Agent Desk Settings.

 • The calls are reported separately in ICM reporting.

Having these two separate requests gives a site some flexibility in implementing
supervisor help for its agents, instructing agents to use one for certain cases and
the other for different situations. In general, use the MakeEmercenyCall method
for higher priority calls than calls made with the RequestSupervisorAssist
method. For example, agents can be trained to click the Emergency button if the
customer has more than $1,000,000 in an account, and otherwise to click the
Supervisor Assist button. The Supervisor will be able to differentiate the agent’s
request by noting the CallType.

The MakeEmergencyCall request is specific to the Supervisor feature and should
only be used on switches or configurations that have the necessary support
(currently, Cisco IPCC only). The client issuing the request receives an
OnEmergencyCall event when the request reaches an available supervisor. If the
request is unsuccessful the client receives an OnControlFailureConf event.

QueryAgentState
The QueryAgentState method lets a client retrieve the current state of the agent.

Syntax

C++: int QueryAgentState (Arguments & args);
COM: HRESULT QueryAgentState (/*[in]*/ IArguments * args,
/*[out,retval]*/ int * errorcode);
VB: QueryAgentState (ByVal args as CTIOSCLIENTLIB.IArguments) As
Long
Java: int QueryAgentState (Arguments args)
.NET: CilError QueryAgentState(Arguments args)
9-38
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Input Parameters

args

Arguments array that contains the parameters listed in Table 9-12.

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

If the request is successful, the client should receive an OnQueryAgentStateConf
event. If it is unsuccessful, the client should receive an OnControlFailureConf event.

ReportBadCallLine
The ReportBadCallLine method informs the CTI OS server of the poor quality of
the agent’s line. A note of this is recorded in the database.

Syntax

C++: int ReportBadCallLine ()
int ReportBadCallLine (Arguments& reserved_args)

COM: HRESULT ReportBadCallLine (/*[in, optional]*/ IArguments
reserved_args, /* [out, retval]*/ int * errorcode)
VB: ReportBadCallLine () As Long
Java: int ReportBadCallLine (Arguments args)
.NET: CilError ReportBadCallLine(Arguments args)

Table 9-12 QueryAgentState Parameters

Keyword Type Description

Agent ID STRING Agent’s login ID.

AgentInstrument STRING Agent’s instrument number.
9-39
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Parameters

reserved_args

Not currently used, reserved for future use.

Java/.NET: args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

RequestAgentTeamList
The RequestAgentTeamList method is called by a supervisor to make a request to
the CTI OS server for a list of agents in the supervisor’s team.

Syntax

C++: int RequestAgentTeamList ()
int RequestAgentTeamList (Arguments& reserved_args)

COM: HRESULT RequestAgentTeamList (/*[in, optional]*/ IArguments
reserved_args, /* [out, retval]*/ int * errorcode)
VB: RequestAgentTeamList () As Long
Java: int RequestAgentTeamList ()

int RequestAgentTeamList (Arguments args)
.NET: CilError RequestAgentTeamList(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.
9-40
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Java/.NET: args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

Supported for use with IPCC only.

If this request is successful, the CTIOS server sends a separate
OnNewAgentTeamMember event for each agent in the supervisor’s team. If this
request is unsuccessful, the client receives an OnControlFailureConf event.

RequestSupervisorAssist
The RequestSupervisorAssist method allows the agent to call an available
supervisor for assistance.

Syntax

C++: virtual int RequestSupervisorAssist();
int RequestSupervisorAssist (Arguments& reserved_args)

COM: HRESULT RequestSupervisorAssist (/*[in, optional]*/ IArguments
reserved_args, /* [out, retval]*/ int * errorcode)
VB: RequestSupervisorAssist () As Long
Java: int RequestSupervisorAssist(Arguments args)
.NET: CilError RequestSupervisorAssist(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.
9-41
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Java/.NET: args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

Supported for use with IPCC only. See “MakeEmergencyCall” for more
information.

SendChatMessage
The SendChatMessage method sends asynchronous chat-like messages between
CTI OS clients. Users can specify a distribution of one or more clients, and attach
a text message.

Syntax

C++: int SendChatMessage (Arguments& args)
COM: HRESULT SendChatMessage (/*[in]*/ IArguments *args,
/*[out,retval]*/ int * errorcode)
VB: SendChatMessage (args As CTIOSCLIENTLib.IArguments) As Long)
Java: int SendChatMessage(Arguments args)
.NET: CilError SendChatMessage(Arguments args)

Parameters

args

Input parameter in the form of an Arguments array that contains one or more
of the SendChatMessage parameters listed in Table 9-13.
9-42
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

The recipient receives the message via the OnChatMessage event.

Table 9-13 SendChatMessage Parameters

Keyword Type Description

Distribution (required) STRING Currently the only supported value is
“agent”.

Target (optional) STRING When the Distribution is set to
DistributeToAgent, this field must be
included with the AgentID of the intended
recipient. When the LoginName is set to the
LoginName of the agent to receive the chat
message, this field must also be set to the
login name of the agent to which to chat.

Message (optional) STRING The text of the user message. Maximum
message size is 255 bytes.

LoginName (optional) STRING Login name of the agent to receive the chat
message. To chat to an agent by login name,
set “LoginName” and “Target” to the login
name of the agent to which to chat.
9-43
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
SetAgentState
The SetAgentState method requests a new agent state. Login and Logout are valid
agent states and can be set using the SetAgentState method as well as by using the
Login and Logout methods.

Syntax

C++: int SetAgentState(Arguments& args)
COM: HRESULT SetAgentState (/*[in]*/ IArguments *args,
/*[out,retval]*/ int * errorcode)
VB: SetAgentState (args As CTIOSCLIENTLib.IArguments) As Long
Java: int SetAgentState(Arguments args)
.NET: CilError SetAgentState(Arguments args)

Input Parameters

args

Input parameter in the form of an Arguments array that contains one or more
of the SetAgentState parameters listed in Table 9-14.

Table 9-14 SetAgentState Parameters

Keyword Type Description

AgentState (required) INT The state to which to set the specified
agent. The value of this field must be
one of the values in Table 6-2.

AgentID (required) STRING* The agent’s login ID.

AgentInstrument STRING* The agent’s instrument number.
Optional if Agent Extension is
provided.

PositionID STRING* Required for Alcatel only.

AgentPassword
(optional)

STRING* The agent’s password.
9-44
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
*The CTI OS server imposes no restriction on the maximum length of this string.
However, such restrictions are generally imposed by your switch/ACD
and Cisco CTI Server. Consult the documentation for the switch/ACD or CTI
Server for information on length restrictions for this string.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

A successful request will result in an OnAgentStateChanged event. It may also
result in OnPreLogout, OnPostLogout, and/or OnLogoutFailed events. If this
request is unsuccessful, the client receives an OnControlFailureConf event.

AgentWorkMode
(optional)

INT A value representing the desired work
mode of the agent. Used by Avaya
DEFINITY ECS with default value of
ManualIn.

NumSkillGroups
(optional)

INT The number of Skill Groups that the
agent is currently associated with, up to
a maximum of 20.

EventReasonCode
(optional)

INT Reason for logging out. Required for
IPCC, optional for all other switches.

PeripheralID
(optional)

INT The ICM Peripheral ID of the ACD the
agent is attached to.

SkillGroupNumber
(optional)

INT The number of an agent skill group
associated with the agent.

SkillGroupPriority
(optional)

INT The priority of an agent skill group
associated with the agent.

Table 9-14 SetAgentState Parameters (continued)

Keyword Type Description
9-45
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
StartMonitoringAgent
The StartMonitoringAgent method allows the client, which must be a supervisor,
to start monitoring the specified Agent object. This call will cause the supervisor
to receive all of the monitored call events (See “IMonitoredCallEvents Interface”
in Chapter 6, “Event Interfaces and Events”) for this agent until the supervisor
calls StopMonitoringAgent.

Syntax

C++: int StartMonitoringAgent(Arguments& args)
COM: HRESULT StartMonitoringAgent (/*[in]*/ IArguments * args,
/*[out,retval]*/ int * errorcode)
VB: StartMonitoringAgent (args As CTIOSCLIENTLib.IArguments) As
Long
Java: int StartMonitoringAgent(Arguments args)
.NET: CilError StartMonitoringCall(Arguments args)

Parameters

args

Arguments array that contains the constant CTIOS_AGENTREFERENCE set
to the string value of the UniqueObjectID of the agent to be monitored.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

This request is specific to the Supervisor feature and should only be used on
switches or configurations that have the necessary support (currently, Cisco IPCC
only).
9-46
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
The following code snippet gets the unique object ID string for an agent, then uses
uses the SetValue method to store the agent object id and string constant
CTIOS_AGENTREFERENCE in an arguments array.

String StrUID = agent.GetValueString(CTIOS_UNIQUEOBJECTID Id);
arg.SetValue(CTIOS_AGENTREFERENCE, StrUID);

StartMonitoringAgentTeam
The StartMonitoringAgentTeam method allows the client, which must be a
supervisor, to start monitoring the specified agent team. A client supervisor uses
this method to receive all of the OnMonitorAgentStateChange events for every
agent on the specified team.

Syntax

C++: int StartMonitoringAgentTeam (Arguments& args)
COM: HRESULT StartMonitoringAgentTeam (/*[in]*/ IArguments args,
/*[out,retval]*/ int * errorcode)
VB: StartMonitoringAgentTeam (args as CTIOSCLIENTLib.IArguments) As
Long
Java: int StartMonitoringAgentTeam (Arguments args)
.NET: CilError StartMonitoringAgentTeam(Arguments args)

Parameters

args

Arguments array that contains the constant CTIOS_TEAMID set to the
integer TeamID to be monitored.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”
9-47
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Remarks

This request is specific to the Supervisor feature and should only be used on
switches or configurations that have the necessary support (currently, Cisco IPCC
only).

StartMonitoringAllAgentTeams
The StartMonitoringAllAgentTeams method allows the client, which must be a
supervisor, to start monitoring all the agents on all the supervisor’s teams. This
will cause the supervisor to receive monitored agent events for all of the agents in
the supervisor’s team (see“IMonitoredAgentEvents Interface” in Chapter 6,
“Event Interfaces and Events”).

Syntax

C++: int StartMonitoringAllAgentTeams (Arguments& reserved_args)
COM: HRESULT StartMonitoringAllAgentTeams (/*[in, optional]*/
IArguments reserved_args, /*[out,retval]*/ int * errorcode)
VB: StartMonitoringAllAgentTeams ([reserved_args as
CTIOSCLIENTLib.IArguments]) As Long
Java: int StartMonitoringAllAgentTeams (Arguments args)
.NET: CilError StartMonitoringAllAgentTeams(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

Java/.NET: args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”
9-48
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

This request is specific to the Supervisor feature and should only be used on
switches or configurations that have the necessary support (currently, Cisco IPCC
only).

StartMonitoringCall

Description

The StartMonitoringCall method allows the client, which must be a supervisor, to
set the value of the currently monitored call that is used in the SuperviseCall
method. Since there is no StopMonitoringCall, to clear the value of the currently
monitored call, call this method with an empty args parameter.

Syntax

C++: int StartMonitoringCall(Arguments& args)
COM: HRESULT StartMonitoringCall (/*[in]*/ IArguments * args,
/*[out,retval]*/ int * errorcode)
VB: StartMonitoringCall (args As CTIOSCLIENTLib.IArguments) As Long
Java: int StartMonitoringCall(Arguments args)
.NET: CilError StartMonitoringCall(Arguments args)

Parameters

args

Arguments array that contains the constant CTIOS_CALLREFERENCE set
to the string value of the UniqueObjectID of the call to be monitored.

errorCode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”
9-49
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

This request is specific to the Supervisor feature and should only be used on
switches or configurations that have the necessary support (currently, Cisco IPCC
only).

StopMonitoringAgent
The StopMonitoringAgent method allows the client, which must be a supervisor,
to stop monitoring the specified Agent object. This will stop all Monitored Call
events from being sent to the supervisor.

Syntax

C++: int StopMonitoringAgent(Arguments& args)
COM: HRESULT StopMonitoringAgent (/*[in]*/ IArguments * args,
/*[out,retval]*/ int * errorcode)
VB: StopMonitoringAgent (args As CTIOSCLIENTLib.IArguments) As Long
Java: int StopMonitoringAgent(Arguments args)
.NET: CilError StopMonitoringAgent(Arguments args)

Parameters

args

Arguments array that contains the constant CTIOS_AGENTREFERENCE set
to the string value of the UniqueObjectID of the agent to stop monitoring.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”
9-50
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

This request is specific to the Supervisor feature and should only be used on
switches or configurations that have the necessary support (currently, Cisco IPCC
only).

StopMonitoringAgentTeam
The StopMonitoringAgentTeam method allows the client, which must be a
supervisor, to stop monitoring all the agents on all the supervisor’s teams.

Syntax

C++:int StopMonitoringAgentTeam (Arguments& args)
COM: HRESULT StopMonitoringAgentTeam (/*[in]*/ IArguments args,
/*[out,retval]*/ int * errorcode)
VB: StopMonitoringAgentTeam (args as CTIOSCLIENTLib.IArguments) As
Long
Java:int StopMonitoringAgentTeam(Arguments args)
.NET: CilError StopMonitoringAgentTeam(Arguments args)

Parameters

args

Arguments array that contains a constant CTIOS_TEAMID set to the integer
TeamID of the team to stop monitoring.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”
9-51
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Remarks

This request is specific to the Supervisor feature and should only be used on
switches or configurations that have the necessary support (currently, Cisco IPCC
only).

StopMonitoringAllAgentTeams
The StopMonitoringAllAgentTeams method allows the client, which must be a
supervisor, to stop monitoring all of the agents on all the supervisor’s teams.

Syntax

C++: int StopMonitoringAllAgentTeams (Arguments& reserved_args)
COM: HRESULT StopMonitoringAllAgentTeams (/*[in,optional]*/
IArguments reserved_args, /*[out,retval]*/ int * errorcode)
VB: StopMonitoringAllAgentTeams([reserved_args as
CTIOSCLIENTLib.IArguments]) As Long
Java: int StopMonitoringAllAgentTeams(Arguments args)
.NET: CilError StopMonitoringAgentTeam(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

Java/.NET: args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”
9-52
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
Remarks

This request is specific to the Supervisor feature and should only be used on
switches or configurations that have the necessary support (currently, Cisco IPCC
only).

SuperviseCall
The SuperviseCall method allows the client, which must be a supervisor, to
perform a supervisory action specified by the args parameter..

Syntax

C++: int SuperviseCall(Arguments& args)
COM: HRESULT SuperviseCall (/*[in]*/ IArguments * args,
/*[out,retval]*/ int errorCode)
VB: SuperviseCall (args As CTIOSCLIENTLib.IArguments) As Long
Java: int SuperviseCall(Arguments args)
.NET: CilError SuperviseCall(Arguments args)

Parameters

args

An input parameter in the form of a pointer to an Arguments array that
contains members with string values that are the UniqueObjectIDs of the
desired agent and call. These should be packaged with the keywords
“AgentReference” and “CallReference” respectively. The third required
parameter is one of the following integers representing the desired
supervisory action.

Value Enum Description

3 eSupervisorBargeIn BargeIn to the specified call of the specified
agent.

4 eSupervisorIntercept Intercept the specified call of the specified
agent.
9-53
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 9 Agent Object
Methods
This is packaged with the constant CTIOS_SUPERVISORYACTION or the
string “SupervisoryAction”.

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

This request is specific to the Supervisor feature and should only be used on
switches or configurations that have the necessary support (currently, Cisco IPCC
only).

A BargeIn action is very similar to a Single Step Conference where the agent is
the conference controller. As such, only this agent is able to add other parties to
the conference; the supervisor will not be able to do this.

An Intercept can only be performed by a supervisor who has already performed a
BargeIn. The Intercept simply hangs up the original agent, leaving only the
customer and the supervisor talking.
9-54
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Ente

C H A P T E R10

Call Object

The Call object provides developers using the CTIOS Client Interface Library
with an interface to Call behavior and control. The Call object exposes methods
to perform all call behaviors, such as answering, hanging up, or transferring a call.
The Call object represents one call connection of a call. For a call between two
parties there are two call connections, and thus there would be two distinct CIL
Call objects.

The object stores specific call information as properties, including the
ICMEnterpriseUniqueID, ANI, DNIS, Call variables, and ExpandedCallContext
variables. The Call object is created in response to call events received at the CIL.
The Call object’s properties and state will be updated throughout the lifetime of
the call connection.

See Chapter 3, “CIL Coding Conventions” for an explanation of accessing Call
and ECC variables via the GetValue mechanism.

Current Call Concept
The Client Interface Library uses the concept of a Current Call. The Current Call
concept is used by the CTI OS Toolkit as a way for the controls and the
application to communicate with each other regarding which call is currently
selected and should be the one to act upon. For example, if an agent has a call and
receives a new Ringing call, he might select the Talking call on the grid. At this
click, CallAppearanceMgr control calls SetCurrentCall() to make this call the
Current Call. When the agent clicks the Hold control, this control would call
GetCurrentCall() to obtain a call pointer through which to call the Hold() method.
The agent might then select the Ringing call, which would again cause the
10-1
rprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Accessing ECC Variables
CallAppearanceMgr control to call SetCurrentCall() to make this new call the
current call. Then, when the agent clicks the Answer control, this control would
again call GetCurrentCall() to obtain a call pointer through which to call the
Answer() method.

If your application uses Cisco’s out-of-the-box button controls (see Chapter 5,
“CTI OS ActiveX Controls”), but not the CallAppearanceMgr grid control, you
will need to use SetCurrentCall() and GetCurrentCall() in order for the button
controls to enable and disable correctly when switching between multiple calls.

Note The CurrentCall concept does not place any limitations on call control of
non-current calls. All of the call behaviors implemented by method calls on the
Call object will work on any call object that is available at the CIL, even if it is
not the CurrentCall.

Accessing ECC Variables
The Cisco ICM System provides a customer-defined data layout for sending call
context data with a call. This mechanism is called Expanded Call Context, or
ECC. ECC variables are defined in the ICM Configuration Manager, and are sent
between ICM servers as a key-value structure. The mechanism for accessing ECC
variables from CTI OS is similar to accessing all other call variables.

To simplify the organization of properties on the Call object, the ECC variables
are stored in their own Arguments structure which is nested in the Call object
Arguments structure.

Retrieving ECC Variable Values
To retrieve an ECC variable from the Call object, first retrieve the ECC
(Arguments) structure from the Call object using GetValueArray with keyword
ECC. Then, retrieve the specific ECC variable required by using its name as the
keyword to GetValueInt, GetValueArray, or GetValueString, depending on its
type. The following is some sample code for C++ without COM:

Arguments * pECCData = NULL;
string sMyECCVariable;
int nMyECCArrayVariable;
10-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Retrieving ECC Variable Values
if (pCall->IsValid(CTIOS_ECC))
{

pCall->GetValueArray(CTIOS_ECC, &pECCData);

if (pECCData)
{

if (pECCData->IsValid("user.MyECC"))
pECCData->GetValueString->("user.MyECC",

&sMyECCVariable);

if(pECCData->IsValid("user.MyArray[2]"))
pECCData->GetValueInt("user.MyArray[2]",

&nMyECCArrayVariable);

pECCData->Release();
pECCData = NULL;

}
}

The same thing in VB would be as follows:

Dim MyECCData As CTIOSARGUMENTSLib.Arguments
Dim MyECCVariable As String
Dim MyECCArrayVariable As Integer

If MyCall.IsValid(CTIOS_ECC) = True Then
Set MyECCData = MyCall.GetValueArray(CTIOS_ECC)

If MyECCData.IsValid("user.MyECC") Then

MyECCVariable = MyECCData.GetValueString("user.MyECC")
End If

If MyECCData.IsValid("user.MyArray[2]") Then

MyECCArrayVariable =
MyECCData.GetValueInt("user.MyArray[2]")

End If
End If

The same thing in Java would be as follows:

if(Call != null)
10-3
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Adding ECC Values
{
Arguments rArgEcc = new Arguments();
rArgEcc = Call.GetValueArray(CTIOS_ECC);
if(null != rArgEcc)
{

rArgEcc.NumElements();
Integer intVal =

rArgEcc.GetValueIntObj("user.MyECC");
String strVal =

rArgEcc.GetValueString("userMyArray[2]");
}

}

Adding ECC Values
If you want to add ECC values to a call without deleting ones that are already set
in the call, retrieve the ECC variables and then add the new ones as shown in C++
without COM:

Arguments & RequestArgs = Arguments::CreateInstance();
Arguments * pECCData = NULL;

// presumes that we have a Call object pointer in pCall
if (pCall->IsValid (CTIOS_ECC))

pCall->GetValueArray(CTIOS_ECC, &pECCData);

else
Arguments::CreateInstance(&pECCData);

pECCData->AddItem("user.MyECC", "FirstECCVariable");
pECCData->AddItem("user.MyArray[2]", 2222);

RequestArgs.AddItem(CTIOS_ECC, *pECCData);
pCall->SetCallData(RequestArgs);

RequestArgs.Release();
pECCData->Release();

The same thing in VB would be as follows:

Dim MyRequestArgs As New CTIOSARGUMENTSLib.Arguments
10-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Properties
Dim MyECCData As CTIOSARGUMENTSLib.Arguments

If MyCall.IsValid(CTIOS_ECC) Then
Set MyECCData = MyCall.GetValueArray(CTIOS_ECC)

Else
Set MyECCData = New CTIOSARGUMENTSLib.Arguments

End If

MyECCData.AddItem("user.MyECC", "FirstECCVariable")
MyECCData.AddItem("user.MyArray[2]", 2222)

MyRequestArgs.AddItem("ECC", MyECCData)

MyCall.SetCallData(MyRequestArgs)

The same thing in Java would be as follows:

Arguments rRequestArgs = new Arguments();
if(Call != null)
{
 Arguments rArgEcc = Call.GetValueArray(CTIOS_ECC);
 if(null == rArgEcc)
 {
 rArgEcc = new Arguments();
 }
 rArgEcc.SetValue("user.MyEcc", 22222);
 rArgEcc.SetValue("user.MyArray[3]", "new data");

 rRequestArgs.SetValue(CTIOS_ECC, rArgEcc);

 Call.SetCallData(rRequestArgs);
}

Properties
Table 10-1 lists the available call object properties.

Note The data type listed for each keyword is the standardized data type discussed in
the section “CTIOS CIL Data Types” in Chapter 3, “CIL Coding Conventions.”
See Table 3-1 for the appropriate language specific types for these keywords.
10-5
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Properties
Table 10-1 Call Object Properties

Keyword Type Description

ANI STRING The calling line ID of the caller.

CallerEnteredDigits STRING The digits entered by the caller in
response to IVR prompting.

CallStatus SHORT The current status of the call.

CallType SHORT The general classification of the
call type.

CallVariable1 STRING Call-related variable data.

CallVariable2 STRING Call-related variable data.

CallVariable3 STRING Call-related variable data.

CallVariable4 STRING Call-related variable data.

CallVariable5 STRING Call-related variable data.

CallVariable6 STRING Call-related variable data.

CallVariable7 STRING Call-related variable data.

CallVariable8 STRING Call-related variable data.

CallVariable9 STRING Call-related variable data.

CallVariable10 STRING Call-related variable data.

CallWrapupData STRING Call-related variable data.

ClassIdentifier INT Private; for internal use only.

DialedNumber STRING The number dialed.

DNIS STRING The DNIS provided with the call.

ECC ARGUMENTS Arguments structure of key-value
pairs of ECC variables.

ICMEnterpriseUniqueID STRING Required only when the call is
pre-routed.

LineType SHORT Indicates the type of the teleset
line.
10-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Properties
MeasuredCallQTime INT Number of seconds this call was in
a local queue before being
delivered to the agent.

PeripheralID INT The ICM PeripheralID of the ACD
where the call activity occurred.

RouterCallKeyCallID INT The call key created by the ICM.
The ICM resets this counter at
midnight.

Router CallKeyDay INT Together with the RouterCall
KeyCallID field forms the unique
64-bit key for locating this call’s
records in the ICM database. Only
provided for Post-routed and
Translation-routed calls.

ServiceID INT The ICM ServiceID of the service
that the call is attributed to. May
contain the special value
NULL_SERVICE when not
applicable or not available.

ServiceNumber INT The service that the call is
attributed to, as known to the
peripheral. May contain the special
value NULL_SERVICE when not
applicable or not available.

SkillGroupID INT The ICM SkillGroupID of the
agent SkillGroup the call is
attributed to. May contain the
special value NULL_SKILL_
GROUP when not applicable or not
available.

Table 10-1 Call Object Properties (continued)

Keyword Type Description
10-7
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Methods
Table 10-2 lists the available call object methods.

SkillGroupNumber INT The number of the agent
SkillGroup the call is attributed to,
as known to the peripheral. May
contain the special value NULL_
SKILL_GROUP when not
applicable or not available.

UniqueObjectID STRING An object ID that uniquely
identifies the call object.

UserToUserInfo STRING The ISDN user-to-user information
element.

Table 10-1 Call Object Properties (continued)

Keyword Type Description

Table 10-2 Call Object Methods

Method Description

Alternate Places the current call on hold and retrieves a
previously held call.

Answer Answers a call that is in the alerting or ringing state.

Clear Clears a call, dropping all parties to the call.

ClearConnection Hangs up a call, leaving other parties in a conference
call. If there are only two parties on the call it clears the
call.

Conference Either establishes a three party conference call or adds
a new party to an existing conference call.

DumpProperties See Chapter 7, “CtiOs Object.”

GetAllProperties See Chapter 7, “CtiOs Object.”

GetCallContext Gets data associated with the call other than call and
expanded call context (ECC) variables.
10-8
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
GetCallData Obtains call and expanded call context (ECC)
variables.

GetElement See Chapter 7, “CtiOs Object.”

GetLastError (.NET
only)

Returns the last error that occurred on the calling
thread.

GetNumProperties See Chapter 7, “CtiOs Object.”

GetPropertyName See Chapter 7, “CtiOs Object.”

GetPropertyType See Chapter 7, “CtiOs Object.”

GetValue methods Retrieve a property from the Call object based on the
property’s name key.

Hold Places a current call on hold.

IsValid See Chapter 7, “CtiOs Object.”

MakeConsultCall Places a current call on hold and makes a new call.

Reconnect Clears the current call and then retrieves a held call.

Retrieve Retrieves a held call.

SetCallData Sets call and expanded call context (ECC) variables.

SendDTMFSignal Requests the ACD to send a sequence of DTMF tones.

SingleStepConference Performs a single step conference.

SingleStepTransfer Performs a single step transfer.

Snapshot Issues a server request to get the current call
information, including call data and a list of associated
devices and the connection state for the call of each
device.

StartRecord Starts recording of a call.

StopRecord Stops recording of a call.

Transfer Transfers a call to a third party.

Table 10-2 Call Object Methods (continued)

Method Description
10-9
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Arguments Parameters
The following rules apply to the optional_args and reserved_args parameters in
Call Object methods:

 • In VB, you can ignore these parameters altogether. For example, you can treat
the line:

Answer([reserved_args As IArguments]) As Long

as follows:

Answer()

 • To ignore these parameters in COM you must send a NULL, as shown:

Answer (NULL)

Alternate
The Alternate method combines the action of placing a talking call on hold and
then retrieving a previously held call at the same device. If there are only two calls
at the device, this method may be called via either the current or the held call.

Syntax

C++: int Alternate()
int Alternate(Arguments & reserved_args);

COM: HRESULT Alternate (/*[in,optional]*/ IArguments
reserved_args, (/[out, retval]*/ int * errorcode);
VB: Alternate([reserved_args As IArguments]) As Long
Java: int Alternate(Arguments rArgs);
.NET: CilError Alternate(Arguments args)

Parameters

reserved_args

A valid Arguments object, which can be empty. Not currently used, reserved
for future use.
10-10
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

For switches that allow more than two calls at a device (for example G3), it is
recommended that this request only be made through the desired held call,
because of the ambiguity caused by multiple held calls at the device.

The Alternate request must be made via a call whose status is either
LCS_CONNECT or LCS_HELD or it will fail.

The following events will be received if this request is successful.

For the call making the Alternate request:

 • OnAlternateCallConf event

For the originally current call:

 • OnCallHeld event

For the originally held call:

 • OnCallRetrieved event

The following events will be received by the call making the Alternate request if
this request fails:

 • OnControlFailureConf event

Answer
The Answer method answers a call that is in the alerting or ringing state (i.e., call
status of LCS_ALERTING).
10-11
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Syntax

C++:int Answer()
int Answer(Arguments & reserved_args)

COM:HRESULT Answer (/*[in,optional]*/ IArguments *reserved_args,
(/*[out, retval]*/ int * errorcode)
VB: Answer([reserved_args As IArguments]) As Long
Java: int Answer(Arguments rArgs)
.NET: CilError Answer(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

A call may be answered after the OnCallDelivered event has been received. The
Answer request must be made via a call whose call status LCS_ALERTING or it
will fail.

The following events will be received if this request is successful:

 • OnAnswerCallConf event

 • OnCallEstablished event

The following events will be received if this request fails:

 • OnControlFailureConf event
10-12
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Clear
The Clear method clears the call and drops all parties to the call.

Syntax

C++:int Clear()
int Clear(Arguments & reserved_args);

COM:HRESULT Clear (/*[in,optional]*/ IArguments *reserved_args,
(/*[out, retval]*/ int * errorcode)
VB: Clear([reserved_args As IArguments]) As Long
Java: int Clear(Arguments rArgs);
.NET: CilError Clear(Arguments args);

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”.

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

In the case of a multi-party Conference call, calling Clear() will result in all of the
parties to the call being hung up. (If this is not the desired behavior, see the
ClearConnection method.) Under certain switches the Clear request will be made
via a call whose status is LCS_CONNECT or LCS_INITIATE or it will fail.
Many other switches will allow the Clear method to be called via a call whose
status is LCS_ALERTING or LCS_HOLD. It may never be made via a call whose
status is LCS_NULL indicating that it has already been cleared.

The following events will be received if this request is successful:

 • OnClearCallConf event
10-13
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
 • OnCallCleared event

The following events will be received if this request fails:

 • OnControlFailureConf event

Note The Clear method is not supported on IPCC. Use of the Clear method with IPCC
will result in loss of third-party call control. To avoid this error, applications
should use the ClearConnection method instead of Clear to hang up a call.

ClearConnection
The ClearConnection method clears a single connection from a call. If there are
only two parties to the call, this effectively clears the call, however for a
multi-party conference call, only the one connection is dropped.

Syntax

C++:int ClearConnection()
int ClearConnection(Arguments & reserved_args);

COM:HRESULT ClearConnection (/*[in,optional]*/ IArguments
reserved_args, (/[out, retval]*/ int * errorcode)
VB: ClearConnection([reserved_args As IArguments]) As Long
Java: int ClearConnection(Arguments rArgs);
.NET: CilError ClearConnection(Arguments args);

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”
10-14
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Remarks

As with the Clear method, under certain switches the ClearConnection request
must be made via a call whose status is LCS_CONNECT or LCS_INITIATE or it
will fail. Many other switches allow the Clear method to be called via a call whose
status is LCS_ALERTING or LCS_HOLD. It may never be made via a call whose
status is LCS_NULL indicating that it has already been cleared.

The following events will be received if this request is successful:

 • OnClearConnectionConf event

 • OnCallConnectionlCleared event

If this is a two party call, these events will be followed by

 • OnCallCleared event

The following events will be received if this request fails:

 • OnControlFailureConf event

Conference
The Conference method either begins a new conference call or adds an additional
call to an existing conference call. When it begins a new conference call, it
combines an original two-party call with a two-party consult call (where the two
calls have a common party) into a single three party call. Only the common party
(which is called the “Conference Controller”) can call this method to make the
new conference call. This method may be called on either of the Conference
Controller’s calls.

Syntax

C++:int Conference();
int Conference(Arguments& optional_args)

COM:HRESULT Conference (/*[in, optional]*/ IArguments
optional_args, (/[out, retval]*/ int * errorcode)
VB: Conference([optional_args As IArguments]) As Long
Java:int Conference(Arguments optional_args)
.NET:CilError Conference(Arguments optional_args)
10-15
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Parameters

optional_args

An optional input parameter, which is a pointer or reference to an Arguments
array that contains a member with the string value that is the UniqueObjectID
of the call to which this call should be conferenced. If this argument is used,
it should be added to the Arguments parameter with the keyword of
“CallReferenceObjectID”. This would only be necessary in an environment
where there are multiple held calls and the request is being made through the
talking call. If the request is being made through a specific held call in this
scenario, or if there are only two calls at the device, this parameter is
unnecessary.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

Before making this request, it is necessary for the original call to be in the held
state and the consult call to be in the talking state or the request will fail.
Therefore, if the calls are alternated (see Alternate), they must be alternated again
to return the two calls to their appropriate states.

If there are only two calls at the device, this method may be called using either
the current or held call. For switches which allow more than two calls at a device
(for example G3), make this request through the desired held call to avoid the
ambiguity caused by multiple held calls at the device. Otherwise, indicate the
desired held call using the optional parameter.

The Conference request must be made via a call whose call status is
LCS_CONNECT or LCS_HELD or it will fail.

On certain switches (notably IPCC), only the Conference Controller (the party
that first initiated the conference call) may add additional parties to an existing
conference call.
10-16
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
The following events will be received if this request is successful:

 • OnConferenceCallConf event

 • OnCallConferenced event

The following events will be received if this request fails:

 • OnControlFailureConf event

GetCallContext
The GetCallContext method returns an Arguments array containing the values for
call properties other than CallVariables and ECC Variables, such as ANI, DNIS,
and the other properties listed in Table 10-3.

Syntax

C++: int GetCallContext(Arguments& args)
COM: HRESULT GetCallContext (/*[out,retval]*/ IArguments ** args)
VB: GetCallContext (CTIOSCLIENTLib.IArguments args)
Java: Arguments GetCallContext()
.NET: Arguments GetCallContext()

Parameters

args

C++, COM, and VB: An output parameter containing a reference or a
pointer to an Arguments array containing any of the members in Table 10-3
that are present in the call.

Return Value

C++, COM, and VB: Default HRESULT return values. See Chapter 3, “CIL
Coding Conventions.”
10-17
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Java/.NET: A reference to an Arguments array that, on return, holds name/value
pairs from Table 10-3. Any of these parameters included may be accessed from
the Arguments array using the associated keyword.

Table 10-3 GetCallContext Arguments Array Contents

Keyword Type Description

ANI STRING The calling line ID of the caller.

CallerEnteredDigits STRING The digits entered by the caller in
response to IVR prompting.

CallType SHORT The general classification of the call
type.

CallWrapupData STRING Call-related wrapup data.

ConnectionCallID UINT The Call ID value assigned to this
call by the peripheral or the ICM.

DialedNumber STRING The number dialed.

DNIS STRING The DNIS provided with the call.

ICMEnterpriseUniqueID STRING A unique identifier for this contact
throughout the enterprise. This can
track a single customer contact
across multiple sites, e.g., when a
call is transferred between agents.

ServiceID INT The ICM identifier for the Service to
which this call was routed.

ServiceNumber INT The ACD number of the Service to
which this call was routed.

SkillGroupID INT The ICM identifier for the
SkillGroup to which this call was
routed.

SkillGroupNumber INT The number of the SkillGroup at the
ACD to which this call was routed.

UniqueObjectID STRING A unique object ID for the call.

UserToUserInfo STRING The ISDN user-to-user information
element.
10-18
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Remarks

This is simply a convenience method to be called to get all of a call’s
non-CallVariable data at one time. If only certain data members are desired, call
the appropriate GetValue method for each instead.

GetCallData
The GetCallData method returns the values ofCallVariable1 through
CallVariable10 and all of the ECC (Extended CallContext) variables.

Syntax

C++: int GetCallData(Arguments& args)
COM:HRESULT GetCallData (/*[out,retval]*/ IArguments ** args)
VB: GetCallData (CTIOSCLIENTLib.IArguments args)
Java: Arguments GetCallData()
.NET: Arguments GetCallData()

Parameters

args

C++, COM, and VB: An output parameter containing a reference or a
pointer to an Arguments array containing the call data, as described under
Remarks.

Return Value

C++, COM, and VB: Default HRESULT return values. See Chapter 3, “CIL
Coding Conventions.”

Java/.NET: A reference to an Arguments array that, on return, holds parameters
described under Remarks.
10-19
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Remarks

This is simply a convenience method to be called to get all of a call’s
CallVariables (1 through 10) and ECC Call Variables at one time. If only certain
call variables are desired, call the appropriate GetValue method for each instead.

Access the data in the following way:

 • To access the values for individual CallVariables from the arguments
parameter, use GetValueString with either the keywords of “CallVariable1”
through ”CallVariable10”.

To access ECC call data, use the following procedure:

 • First, get the ECC variables as a whole from the arguments parameter, using
GetValueArray with the keyword “ECC’. This will return another Arguments
array that is nested in the Arguments array returned from GetCallData.

 • To access an individual ECC scalar variable from this Arguments array, use
the appropriate GetValueString, GetValueInt, etc. depending on the
variable’s type, using the string keyword “user.VariableName”.

 • To access an individual ECC array variable from this Arguments array, use
the appropriate GetValueString, GetValueInt, etc. depending on the
variable’s type, using the string keyword “user.ArrayName[n] where n is a
zero based integer that notes the offset in the array.

Hold
The Hold method holds a current call.

Syntax

C++: int Hold()
int Hold(Arguments & reserved_args);

COM: HRESULT Hold (/*[in,optional]*/ IArguments *reserved_args,
(/*[out, retval]*/ int * errorcode)
VB: Hold([reserved_args As IArguments]) As Long
Java: Arguments Hold(Arguments rArgs)
NET: Arguments Hold(Arguments args)
10-20
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

The Hold request must be made via a call whose call status is LCS_CONNECT
or it will fail.

The following events will be received if this request is successful:

 • OnHoldCallConf event

 • OnCallHeld event

The following events will be received if this request fails:

 • OnControlFailureConf event

MakeConsultCall
The MakeConsultCall method initiates the combined action of placing the
associated current call on hold and then making a new call. By default, the call
context data (including call variables) of the current call is used to initialize the
context data of the new consultation call. The application may override some or
all of the original call context in the consultation call by providing the desired
values in this request.

The simplest form of the request only requires a dialed number and a consult type.
The request may also include optional parameters, as listed in Table 10-4.
10-21
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Syntax

C++:int MakeConsultCall (Arguments& args))
COM:HRESULT MakeConsultCall (/*[in]*/ IArguments *args, /*[out,
retval]*/ int * errorcode)
VB: MakeConsultCall (args As CTIOSCLIENTLib.IArguments) As Long
Java:int MakeConsultCall(Arguments args)
.NET:CilError MakeConsultCall(Arguments args)

Parameters

args

An output parameter of either a reference or a pointer to an Arguments array
that contains parameters from Table 10-4. Any of these parameters included
should be added to the Arguments array using the associated key word.

Table 10-4 MakeConsultCall Parameters

Parameter Type Description

DialedNumber (required) STRING,
maximum
length 40

Dialed number; the number to be
dialed to establish the new call.

ConsultType (required) INT A value specifying whether this
consult call is in preparation for
either a transfer or a conference,
as specified in the ConsultType
Table.

CallPlacementType
(optional)

STRING,
maximum
length 40

A value specifying how the call
is to be placed identified in
Table 10-5.

CallMannerType (optional) INT A value specifying additional
call processing options identified
in Table 10-6.
10-22
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
AlertRings (optional) INT The maximum amount of time
that the call’s destination will
remain alerting, specified as an
approximate number of rings. A
zero value indicates that the
peripheral default (typically 10
rings) should be used.

CallOption (optional) INT A value from Table 10-7
specifying additional
peripheral-specific call options.

FacilityType (optional) INT A value from Table 10-8
indicating the type of facility to
be used.

AnsweringMachine
(optional)

INT A value from Table 10-9
specifying the action to be taken
if the call is answered by an
answering machine.

Priority (optional) BOOL This field should be set to TRUE
if the call should receive priority
handling.

PostRoute (optional) BOOL When this field is set to TRUE,
the Post-Routing capabilities of
the ICM will determine the new
call destination.

UserToUserInfo (optional) STRING,
maximum
length 40

The ISDN user-to-user
information.

CallVariable1 (optional) STRING,
maximum
length 40

Call variable data that should be
set in the new call in place of the
corresponding data in the current
call.

...

CallVariable10 (optional)

Table 10-4 MakeConsultCall Parameters (continued)

Parameter Type Description
10-23
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
ECC ARGUMENTS ECC data that should be set in
the new call in place of the
corresponding data in the current
call.

CallWrapupData (optional) STRING,
maximum
length 40

Call-related wrapup data.

FacilityCode (optional) STRING,
maximum
length 40

A trunk access code, split
extension, or other data needed
to access the chosen facility.

AuthorizationCode
(optional)

STRING,
maximum
length 40

An authorization code needed to
access the resources required to
initiate the call.

AccountCode (optional) STRING,
maximum
length 40

A cost-accounting or client
number used by the peripheral
for charge-back purposes.

Table 10-5 CallPlacementType Values

CallPlacementType Description Value

CPT_UNSPECIFIED Use default call placement. 0

CPT_LINE_CALL An inside line call. 1

CPT_OUTBOUND An outbound call. 2

CPT_OUTBOUND_NO_
ACCESS_CODE

An outbound call that will not require
an access code.

3

CPT_DIRECT_POSITION A call placed directly to a specific
position.

4

CPT_DIRECT_AGENT A call placed directly to a specific
agent.

5

CPT_SUPERVISOR_ASSIST A call placed to a supervisor for call
handling assistance.

6

Table 10-4 MakeConsultCall Parameters (continued)

Parameter Type Description
10-24
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Table 10-6 CallMannerType Values

CallMannerType Description Value

CMT_UNSPECIFIED Use default call manner. 0

CMT_POLITE Attempt the call only if the originating
device is idle.

1

CMT_BELLIGERENT The call should always be attempted,
disconnecting any currently active call.

2

CMT_SEMI_POLITE Attempt the call only if the originating
device is idle or is receiving dial tone.

3

Table 10-7 CallOption Values

CallOption Description Value

COPT_UNSPECIFIED No call options specified, use defaults. 0

COPT_CALLING_
AGENT_ONLINE

Attempt the call only if the calling agent is
“online” (available to interact with the
destination party).

1

COPT_CALLING_
AGENT_RESERVED

Attempt the call only if ACDNR on the
calling agent’s set is activated (DMS-100).

2

COPT_CALLING_
AGENT_NOT_
RESERVED

Attempt the call only if ACDNR on the
calling agent’s set is not activated
(DMS-100).

3

COPT_CALLING_
AGENT_BUZZ_BASE

Causes a buzz to be applied to the base of the
telephone set as the call is initiated
(DMS-100).

4

COPT_CALLING_
AGENT_BEEP_HSET

Causes a tone to be applied to the agent
headset as the call is initiated (DMS-100).

5

COPT_SERVICE_
CIRCUIT_ON

Causes a call classifier to be applied to the
call (DEFINITY ECS)

6

10-25
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Table 10-8 FacilityType Values

FacilityType Description Value

FT_UNSPECIFIED Use default facility type. 0

FT_TRUNK_GROUP Facility is a trunk group. 1

FT_SKILL_GROUP Facility is a skill group or split. 2

Table 10-9 AnsweringMachine Values

AnsweringMachine Description Value

AM_UNSPECIFIED Use default behavior. 0

AM_CONNECT Connect call to agent when call is
answered by an answering machine.

1

AM_DISCONNECT Disconnect call when call is answered by
an answering machine.

2

AM_NONE Do not use answering machine
detection.

3

AM_NONE_NO_
MODEM

Do not use answering machine
detection, but disconnect call if
answered by a modem.

4

AM_CONNECT_NO_
MODEM

Connect call when call is answered by an
answering machine, disconnect call if
answered by a modem.

5

10-26
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Remarks

The MakeConsultCall request must be made via a call whose call status is
LCS_CONNECT or it will fail. Calling MakeConsultCall successfully will result
in the same events as a successful MakeCall called on the agent.

The following events will be received if this request is successful.

For the call making the MakeConsultCallRequest:

 • OnMakeConsultCallConf event

 • OnCallHeld event

For the newly created outgoing consult call:

 • OnBeginCall event

 • OnServiceInitiated event

 • OnCallOriginated event

 • OnCallDelivered event

For the new connection that is ringing as a result of the consult call:

 • OnBeginCall event

 • OnCallDelivered event

The following events will be received if this request fails:

 • OnControlFailureConf event

Reconnect
The Reconnect method combines the action of releasing a current call and then
retrieving a previously held call at the same device. If there are only two calls at
the device, this method may be called via either the talking or the held call.

Syntax

C++: int Reconnect()
int Reconnect(Arguments & reserved_args)

COM: HRESULT Reconnect (/*[in,optional]*/ IArguments *
reserved_args, (/*[out, retval]*/ int * errorcode)
VB: Reconnect([reserved_args As IArguments]) As Long
Java: int Reconnect(Arguments rArgs)
10-27
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
.NET: CilError Reconnect(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

For switches which allow more than two calls at a device (for example G3), it is
recommended that this request only be made through the desired held call,
because of the ambiguity caused by multiple held calls at the device.

The Alternate request must be made via a call whose status is either
LCS_CONNECT or LCS_HELD or it will fail.

The following events will be received if this request is successful.

For the call making the Reconnect request:

 • OnReconnectCallConf event

For the originally current call:

 • OnCallConnectionCleared event

 • OnCallCleared event

 • OnCallEnd event

For the originally held call:

 • OnCallRetrieved event

The following events will be received by the call making the Alternate request if
this request fails:
10-28
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
 • OnControlFailureConf event

Retrieve
The Retrieve method unholds a held call.

Syntax

C++int Retrieve()
int Retrieve(Arguments & reserved_args)

COM:HRESULT Retrieve (/*[in,optional]*/ IArguments *reserved_args,
(/*[out, retval]*/ int * errorcode)
VB: Retrieve([reserved_args As IArguments]) As Long
Java:int Retrieve(Arguments rArgs)
.NET:CilError Retrieve(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

The Retrieve request must be made via a call whose call status is LCS_HELD or
it will fail.

The following events will be received if this request is successful:

 • OnRetrieveCallConf event

 • OnCallRetrieved event
10-29
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
The following events will be received if this request fails:

 • OnControlFailureConf event

SendDTMFSignal
The SendDTMFSignal method requests that the ACD send a sequence of DTMF
tones.

Syntax

C++:int SendDTMFSignal(Arguments& args)
COM: HRESULT SendDTMFSignal (/*[in]*/ args *arguments, /*[out,
retval]*/ int * errorcode)
VB: SendDTMFSignal (args As CTIOSCLIENTLib.IArguments, errorcode As
Long)
Java:int SendDTMFSignal(Arguments rArgs)
.NET:CilError SendDTMFSignal(Arguments args)

Parameters

args

An input parameter of either a reference or a pointer to an Arguments array
containing parameters from Table 10-10. Any of these parameters included
should be added to the Arguments array using the associated key word.
10-30
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

The following event will be received if this request succeeds:

 • OnSendDTMFSignalConf

The following event will be received if this request fails:

 • OnControlFailureConf

Table 10-10 SendDTMFSignal Parameters

Parameter Type Description

DTMFString (required) STRING.
maximum
length 32

The sequence of tones to be generated.

ToneDuration (optional) INT Specifies the duration in milliseconds
of DTMF digit tones. Use 0 to take the
default. May be ignored if the
peripheral is unable to alter the DTMF
tone timing.

PauseDuration (optional) INT Specifies the duration in milliseconds
of DTMF inter-digit spacing. Use 0 to
take the default. May be ignored if the
peripheral is unable to alter the DTMF
tone timing.
10-31
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
SetCallData
The SetCallData method enables any or all of a call’s CallVariables (1 through
10) and ECC data to be set at one time.

Syntax

C++: int SetCallData(Arguments& args)
COM: HRESULT SetCallData (/*[in]*/ args *arguments, /*[out]*/ int *
errorcode)
VB: SetCallData (args As CTIOSCLIENTLib.IArguments, errorcode As
Long)
Java: int SetCallData(Arguments rArgs)
.NET CilError SetCallData(Arguments args)

Parameters

args

An input parameter of either a reference or a pointer to an Arguments array
containing parameters described under Remarks for GetCallData.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

You must specify the data for all elements in the Arguments array, not just those
elements that you want to change. Failure to do so will cause the unchanged
elements to disappear.

The following events will be sent if this request succeeds:

 • OnSetCallDataConf

 • OnCallDataUpdate
10-32
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
The following event will be sent if this request fails:

 • OnControlFailureConf

SingleStepConference
The SingleStepConference method initiates a one-step conference without the
intermediate consultative call so that when the called party answers, he will be
joined in the current call. This method requires a DialedNumber argument. This
method is not supported under all switches.

Note The SingleStepConference method is not supported for the IPCC Enterprise and
Hosted Editions.

Syntax

C++:int SingleStepConference(Arguments& args)
COM:HRESULT SingleStepConference (IArguments *args, int * errorcode)
VB: SingleStepConference (args As CTIOSCLIENTLib.IArguments,
errorcode As Long)
Java:int SingleStepConference(Arguments rArgs)
.NET:CilError SingleStepConference(Arguments args)

Parameters

args

An output parameter of either a reference or a pointer to an Arguments array
containing parameters from Table 10-11. Any of these parameters included
should be added to the Arguments array using the associated keyword.
10-33
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Table 10-11 SingleStepConference Parameters

Parameter Type Description

DialedNumber (required) STRING,
maximum
length 40

Dialed number; the number to be
dialed to establish the new call.

CallPlacementType
(optional)

STRING,
maximum
length 40

A value specifying how the call
is to be placed identified in
Table 10-5.

CallMannerType (optional) INT A value specifying additional
call processing options identified
in Table 10-6.

AlertRings (optional) INT The maximum amount of time
that the call’s destination will
remain alerting, specified as an
approximate number of rings. A
zero value indicates that the
peripheral default (typically 10
rings) should be used.

CallOption (optional) INT A value from Table 10-7
specifying additional
peripheral-specific call options.

FacilityType (optional) INT A value from Table 10-8
indicating the type of facility to
be used.

AnsweringMachine
(optional)

INT A value from Table 10-9
specifying the action to be taken
if the call is answered by an
answering machine.

Priority (optional) BOOL This field should be set to TRUE
if the call should receive priority
handling.

PostRoute (optional) BOOL When this field is set to TRUE,
the Post-Routing capabilities of
the ICM will determine the new
call destination.
10-34
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

UserToUserInfo (optional) STRING,
maximum
length 40

The ISDN user-to-user
information.

CallVariable1 (optional) STRING,
maximum
length 40

Call variable data that should be
set in the new call in place of the
corresponding data in the current
call.

...

CallVariable10 (optional)

ECC ARGUMENTS ECC data that should be set in
the new call in place of the
corresponding data in the current
call.

FacilityCode (optional) STRING,
maximum
length 40

A trunk access code, split
extension, or other data needed
to access the chosen facility.

AuthorizationCode
(optional)

STRING,
maximum
length 40

An authorization code needed to
access the resources required to
initiate the call.

AccountCode (optional) STRING,
maximum
length 40

A cost-accounting or client
number used by the peripheral
for charge-back purposes.

Table 10-11 SingleStepConference Parameters (continued)

Parameter Type Description
10-35
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Remarks

The DialedNumber is the only required member necessary in the Arguments
parameter. A SingleStepConference request will fail if the call’s status is not
LCS_CONNECT.

The following events will be received if this request is successful:

 • OnAgentStateChange event (Hold)

 • OnCallHeld event

 • OnAgentStateChange event (Talking)

 • OnBeginCall event

 • OnServiceInitiated event

 • OnCallOriginated event

 • OnCallDelivered event

 • OnCallConferenced event

 • OnCallEnd event

 • ConferenceCallConf event

The following events will be received if this request fails:

 • OnControlFailureConf event

SingleStepTransfer
The SingleStepTransfer method initiates a one-step transfer without the
intermediate consultative call. When the called party answers the call, the called
party will be talking to the party to be transferred and the transferring party will
drop out of the call. The method requires a DialedNumber argument.

Syntax

C++:int SingleStepTransfer(Arguments& args)
COM:HRESULT SingleStepTransfer (/*[in]*/ IArguments * args, /*[out,
retval]*/ int * errorcode)
VB: SingleStepTransfer (args As CTIOSCLIENTLib.IArguments,
errorcode As Long)
Java:int SingleStepTransfer(Arguments rASrgs)
10-36
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
.NET:CilError SingleStepTransfer(Arguments args)

Parameters

args

An output parameter of either a reference or a pointer to an Arguments array
containing parameters from Table 10-11. Any of these parameters included
should be added to the Arguments array using the associated keyword.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Snapshot
The Snapshot method issues a server request to retrieve the current call
information. If values are passed in the optional args parameter, the snapshot
request will return the server's current call values for only the requested
arguments. Otherwise all call information is returned, including the fields
described under GetCallContext and GetCallData. See OnCallDataUpdate in
Chapter 6, “Event Interfaces and Events” for more information.

Syntax

C++ int Snapshot()
int Snapshot(Arguments & optional_args)

COM: HRESULT Snapshot (/*[in,optional]*/ IArguments *
optional_args, (/*[out, retval]*/ int * errorcode)
VB: Snapshot([optional_args As IArguments]) As Long
Java: int Snapshot(Arguments rArgs)
.NET: CilError Snapshot(Arguments Args)
10-37
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Parameters

optional_args

An input parameter of either a pointer or a reference to an Arguments array.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

The current information about the call will be received in the OnCallDataUpdate
event.

The following events will be received if this request is successful:

 • OnCallDataUpdate event

The following events will be received if this request fails:

 • OnControlFailureConf event

StartRecord
The StartRecord method is used to start recording a call.

Syntax

C++: int StartRecord()
int StartRecord(Arguments & reserved_args);

COM: HRESULT StartRecord (/*[in,optional]*/ IArguments
reserved_args, (/[out, retval]*/ int * errorcode)
VB: StartRecord([reserved_args As IArguments]) As Long
Java: int StartRecord(Arguments rArgs)
NET: CilError StartRecord(Arguments args)
10-38
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

Calling this method causes the CTI Server to forward the request to one or more
server applications that have registered the “Cisco:CallRecording” service as
described in the Cisco ICM Software CTI Server Message Reference. It will fail
if there is no recording server available to CTIServer.

The following events will be received if this request is successful:

 • OnStartRecordingConf event

The following events will be received if this request fails:

 • OnControlFailureConf event

StopRecord
The StopRecord method is used to stop recording a call.

Syntax

C++: int StopRecord()
int StopRecord(Arguments & reserved_args);

COM:HRESULT StopRecord (/*[in,optional]*/ IArguments *reserved_args,
 (/*[out, retval]*/ int * errorcode)

VB: StopRecord([reserved_args As IArguments]) As Long
Java: int StopRecord(Arguments rArgs)
.NET: CilError StopRecord(Arguments args)
10-39
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

Calling this method causes the CTIServer to forward the request to the server
application with the SessionID received in the OnStartRecordingConf event if
non-zero, or if that SessionID is zero, to one or more server applications that have
registered the “Cisco:CallRecording” service as described in the Cisco ICM
Software CTI Server Message Reference. It will fail if there is no recording server
available to CTIServer.

The following events will be received if this request is successful:

 • OnStopRecordConf event

The following event will be received if this request fails:

 • OnControlFailureConf event

Transfer
The Transfer method transfers a call to a third party. This method may be called
on either the held original call or the current consult call. If the device has only
these two calls, the optional parameter is not necessary. At the end of a successful
transfer, both of these calls will be gone from the device. See the Conference
method for more information.
10-40
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
Syntax

C++: int Transfer();
int Transfer(Arguments& optional_args)

COM: HRESULT Transfer ([in, optional] IArguments *optional_args,
(/*[out, retval]*/ int * errorcode)
VB: Transfer([optional_args As IArguments]) As Long
Java: int Transfer(Arguments rArgs)
.NET: CilError Transfer(Arguments args)

Parameters

optional_args

An optional input parameter containing a member with a string value that is
the UniqueObjectID of the call that is participating in the transfer. If this
argument is used, it should be added to the Arguments parameter with the
keyword of “CallReferenceObjectID”. This would only be necessary in an
environment where there are multiple held calls and the request is being made
through the current call. If the request is being made through a specific held
call in this scenario, or if there are only two calls at the device, this parameter
is unnecessary.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

Before making this request, it is necessary for the original call to be in the held
state and the consult call to be in the talking state or the request will fail.
Therefore, if the calls are alternated (See Alternate), they must be alternated again
to return the two calls into their appropriate states.
10-41
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 10 Call Object
Methods
If there are only two calls at the device, call this method using either the current
or held call. For switches that allow more than two calls at a device (for example
G3), make this request only through the desired held call to avoid the ambiguity
caused by multiple held calls at the device. Otherwise, indicate the desired held
call by using the optional parameter.

The Transfer request must be made via a call whose call status is
LCS_CONNECT or LCS_HELD or it will fail.

The following events are received by the transfer initiator if this request is
successful:

 • OnCallTransferred event

 • OnCallEnd event

 • OnCallEnd event

 • OnAgentStateChange event

 • OnTransferCallConf event

The following events will be received if this request fails:

 • OnControlFailureConf event
10-42
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Ente

C H A P T E R11

SkillGroup Object

The SkillGroup object provides developers using the CTI OS Client Interface
Library with an interface to Skill Group properties and data. The SkillGroup is
mainly a representation used for accessing statistics, which can be enabled or
disabled via method calls to the SkillGroup object. The SkillGroups are accessible
directly from the Session object or the Agent Object.

The SkillGroup object methods can be accessed as follows:

 • Via the Agent object inside the Session in Agent mode

 • Via the Agent object inside the Session in Monitor mode

 • In C++, Java, and .NET, via the session object inside the session in Monitor
mode when the special SkillGroupStats filter is set. See the section “Filtering
Skillgroup Statistics” in Chapter 8 for code examples related to the special
SkillGroupStats filter.

Properties
Table 11-1 lists the available SkillGroup properties.

Note The data type listed for each keyword is the standardized data type discussed in
the section “CTIOS CIL Data Types” in Chapter 3, “CIL Coding Conventions.”
See Table 3-1 for the appropriate language specific types for these keywords.
11-1
rprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
To access statistics, first use GetValue on the Skill Group object to obtain the
Statistics arguments array, then use GetValue to obtain the desired value.

Note Not all the statistics values listed in Table 11-1 are present in every system
configuration. Whether a particular statistic value is available depends both on the
protocol version of CTIServer with which CTI OS connects and on the peripheral
on which the agent resides.The statistics listed in Table 11-2 are available in
Protocol Version 8 of CTI Server.

One very important real-time skillgroup statistic is the number of calls currently
in queue. Previously, this value was typically provided in CallsQNow. However,
the number of calls currently in queue is now stored in RouterCallsQNow.

Statistics
Table 11-2 lists the available SkillGroup statistics.

Table 11-1 Skill Group Properties

Keyword Type Description

SkillGroupNumber INT The number of the skill group from the
Peripheral.

SkillGroupID STRING The ICM SkillGroupID of the SkillGroup,
if available.

SkillGroupName STRING The ICM SkillGroupName of the
SkillGroup, if available.

SkillGroupState INT Values representing the current state of the
associated agent with respect to the
indicated Agent Skill Group.

ClassIdentifier INT Value represents skillgroup class.
11-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
Table 11-2 Skill Group Statistics

Statistic Definition

AgentsLoggedOn Number of agents that are currently
logged on to the skill group.

AgentsAvail Number of agents for the skill group in
Available state ready to take calls.

AgentsNotReady Number of agents in the Not Ready
state for the skill group.

AgentsReady Number of agents that are in work state
(TALKING, HELD, WORK_READY,
AVAILABLE, or RESERVED). This
statistic is used by the router to
determine the number of working
agents in the skill group when
estimating the expected delay. It is the
difference between AgentsLoggedOn
and AgentsNotReady. Reference
AgentsAvail to get the number of
agents that are available to take calls
right now.

AgentsTalkingIn Number of agents in the skill group
currently talking on inbound calls.

AgentsTalkingOut Number of agents in the skill group
currently talking on outbound calls.

AgentsTalkingOther Number of agents in the skill group
currently talking on internal (not
inbound or outbound) calls.

AgentsWorkNot Ready Number of agents in the skill group in
the Work Not Ready state.

AgentsWorkReady Number of agents in the skill group in
the Work Ready state.

AgentsBusyOther Number of agents currently busy with
calls assigned to other skill groups.
11-3
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
AgentsReserved Number of agents for the skill group
currently in the Reserved state.

AgentsHold Number of calls to the skill group
currently on hold.

AgentsICM Available Number of agents in the skill group
currently in the ICMAvailable state.

AgentsApplication Available Number of agents in the skillgroup
currently in the Application Available
state.

AgentsTalkingAutoOut Number of calls to the skill group
currently talking on AutoOut
(predictive) calls.

AgentsTalking Preview Number of calls to the skill group
currently talking on outbound Preview
calls.

AgentsTalking Reservation Number of calls to the skill group
currently talking on agent reservation
calls.

RouterCallsQNow** The number of calls currently queued
by the ICM call router for this skill
group. This field is set to 0xFFFFFFFF
when this value is unknown or
unavailable.

LongestRouterCallQNow** The queue time, in seconds, of the
currently ICM call router queued call
that has been queued to the skill group
the longest. This field is set to
0xFFFFFFFF when this value is
unknown or unavailable.

CallsQNow* The number of calls currently queued
to the skill group. This field is set to
0xFFFFFFFF when this value is
unknown or unavailable.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
CallsQTimeNow* The total queue time, in seconds, of
calls currently queued to the skill
group. This field is set to 0xFFFFFFFF
when this value is unknown or
unavailable.

LongestCallQNow* The queue time, in seconds, of the
currently queued call that has been
queued to the skill group the longest.
This field is set to 0xFFFFFFFF when
this value is unknown or unavailable.

AvailTimeTo5 Total seconds agents in the skill group
were in the Available state.

LoggedOnTimeTo5 Total time, in seconds, agents in the
skill group were logged on.

NotReadyTimeTo5 Total seconds agents in the skill group
were in the Not Ready state.

AgentOutCallsTo5 Total number of completed outbound
ACD calls made by agents in the skill
group.

AgentOutCallsTalk TimeTo5 Total talk time, in seconds, for
completed outbound ACD calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated by the agent to
the time the agent begins after call
work for the call. The time includes
hold time associated with the call.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-5
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
AgentOutCallsTimeTo5 Total handle time, in seconds, for
completed outbound ACD calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated by the agent to
the time the agent completes after call
work time for the call. The time
includes hold time associated with the
call.

AgentOutCallsHeldTo5 The total number of completed
outbound ACD calls agents in the skill
group have placed on hold at least
once.

AgentOutCallsHeldTimeTo5 Total number of seconds outbound
ACD calls were placed on hold by
agents in the skill group.

HandledCallsTo5 The number of inbound ACD calls
handled by agents in the skill group.

HandledCallsTalk TimeTo5 Total talk time in seconds for Inbound
ACD calls counted as handled by
agents in the skill group. Includes hold
time associated with the call.

HandledCallsAfter CallTimeTo5 Total after call work time in seconds
for Inbound ACD calls counted as
handled by agents in the skill group.

HandledCallsTime To5 Total handle time, in seconds, for
inbound ACD calls counted as handled
by agents in the skill group. The time
spent from the call being answered by
the agent to the time the agent
completed after call work time for the
call. Includes hold time associated
with the call.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
IncomingCallsHeldTo5 The total number of completed
inbound ACD calls agents in the skill
group placed on hold at least once.

IncomingCallsHeldTimeTo5 Total number of seconds completed
inbound ACD calls were placed on
hold by agents in the skill group.

InternalCallsRcvdTo5 Number of internal calls received by
agents in the skill group.

InternalCallsRcvd TimeTo5 Number of seconds spent on internal
calls received by agents in the skill
group.

InternalCallsHeldTo5 The total number of internal calls
agents in the skill group placed on hold
at least once.

InternalCallsHeld TimeTo5 Total number of seconds completed
internal calls were placed on hold by
agents in the skill group.

AutoOutCallsTo5 Total number of AutoOut (predictive)
calls completed by agents in the skill
group.

AutoOutCallsTalk TimeTo5 Total talk time, in seconds, for
completed AutoOut (predictive) calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent begins after call work for the
call. The time includes hold time
associated with the call.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-7
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
AutoOutCallsTime To5 Total handle time, in seconds, for
completed AutoOut (predictive) calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent completes after call work time
for the call. The time includes hold
time associated with the call.

AutoOutCallsHeld To5 The total number of completed
AutoOut (predictive) calls that agents
in the skill group have placed on hold
at least once.

AutoOutCallsHeld TimeTo5 Total number of seconds AutoOut
(predictive) calls were placed on hold
by agents in the skill group.

PreviewCallsTo5 Total number of outbound Preview
calls completed by agents in the skill
group.

PreviewCallsTalk TimeTo5 Total talk time, in seconds, for
completed outbound Preview calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent begins after call work for the
call. The time includes hold time
associated with the call.

PreviewCallsTime To5 Total handle time, in seconds, for
completed outbound Preview calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent completes after call work time
for the call. The time includes hold
time associated with the call.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-8
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
PreviewCallsHeld To5 The total number of completed
outbound Preview calls that agents in
the skill group have placed on hold at
least once.

PreviewCallsHeld TimeTo5 Total number of seconds outbound
Preview calls were placed on hold by
agents in the skill group.

ReservationCallsTo5 Total number of agent reservation calls
completed by agents in the skill group.

ReservationCalls TalkTimeTo5 Total talk time, in seconds, for
completed agent reservation calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent begins after call work for the
call. The time includes hold time
associated with the call.

ReservationCalls TimeTo5 Total handle time, in seconds, for
completed agent reservation calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent completes after call work time
for the call. The time includes hold
time associated with the call.

ReservationCalls HeldTo5 The total number of agent reservation
calls that agents in the skill group have
placed on hold at least once.

ReservationCalls HeldTimeTo5 Total number of seconds agent
reservation calls were placed on hold
by agents in the skill group.

BargeInCallsTo5 Total number of supervisor call
barge-ins completed in the skill group.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-9
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
InterceptCallsTo5 Total number of supervisor call
intercepts completed in the skill group.

MonitorCallsTo5 Total number of supervisor call
monitors completed in the skill group.

WhisperCallsTo5 Total number of supervisor call
whispers completed by agents in the
skill group.

EmergencyCallsTo5 Total number of emergency calls
completed by agents in the skill group.

CallsQ5* The number of calls queued to the skill
group during the current five-minute.
This field is set to 0xFFFFFFFF when
this value is unknown or unavailable.

CallsQTime5* The total queue time, in seconds, of
calls queued to the skill group during
the current five-minute. This field is set
to 0xFFFFFFFF when this value is
unknown or unavailable.

LongestCallQ5* The longest queue time, in seconds, of
all calls queued to the skill group
during the current five-minute. This
field is set to 0xFFFFFFFF when this
value is unknown or unavailable.

AvailTimeToHalf Total seconds agents in the skill group
were in the Available state.

LoggedOnTime ToHalf Total time, in seconds, agents in the
skill group were logged on.

NotReadyTime ToHalf Total seconds agents in the skill group
were in the Not Ready state.

AgentOutCallsTo Half Total number of completed outbound
ACD calls made by agents in the skill
group.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-10
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
AgentOutCallsTalk TimeToHalf Total talk time, in seconds, for
completed outbound ACD calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated by the agent to
the time the agent begins after call
work for the call. The time includes
hold time associated with the call.

AgentOutCallsTimeToHalf Total handle time, in seconds, for
completed outbound ACD calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated by the agent to
the time the agent completes after call
work time for the call. The time
includes hold time associated with the
call.

AgentOutCallsHeldToHalf The total number of completed
outbound ACD calls agents in the skill
group have placed on hold at least
once.

AgentOutCallsHeldTimeToHalf Total number of seconds outbound
ACD calls were placed on hold by
agents in the skill group.

HandledCallsToHalf The number of inbound ACD calls
handled by agents in the skill group.

HandledCallsTalk TimeToHalf Total talk time in seconds for Inbound
ACD calls counted as handled by
agents in the skill group. Includes hold
time associated with the call.

HandledCallsAfter CallTimeToHalf Total after call work time in seconds
for Inbound ACD calls counted as
handled by agents in the skill group.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-11
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
HandledCallsTime ToHalf Total handle time, in seconds, for
inbound ACD calls counted as handled
by agents in the skill group. The time
spent from the call being answered by
the agent to the time the agent
completed after call work time for the
call. Includes hold time associated
with the call.

IncomingCallsHeldToHalf The total number of completed
inbound ACD calls agents in the skill
group placed on hold at least once.

IncomingCallsHeldTimeToHalf Total number of seconds completed
inbound ACD calls were placed on
hold by agents in the skill group.

InternalCallsRcvdToHalf Number of internal calls received by
agents in the skill group.

InternalCallsRcvd TimeToHalf Number of seconds spent on internal
calls received by agents in the skill
group.

InternalCallsHeldToHalf The total number of internal calls
agents in the skill group placed on hold
at least once.

InternalCallsHeld TimeToHalf Total number of seconds completed
internal calls were placed on hold by
agents in the skill group.

AutoOutCallsToHalf Total number of AutoOut (predictive)
calls completed by agents in the skill
group.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-12
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
AutoOutCallsTalk TimeToHalf Total talk time, in seconds, for
completed AutoOut (predictive) calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent begins after call work for the
call. The time includes hold time
associated with the call.

AutoOutCallsTime ToHalf Total handle time, in seconds, for
completed AutoOut (predictive) calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent completes after call work time
for the call. The time includes hold
time associated with the call.

AutoOutCallsHeld ToHalf The total number of completed
AutoOut (predictive) calls that agents
in the skill group have placed on hold
at least once.

AutoOutCallsHeld TimeToHalf Total number of seconds AutoOut
(predictive) calls were placed on hold
by agents in the skill group.

PreviewCallsToHalf Total number of outbound Preview
calls completed by agents in the skill
group.

PreviewCallsTalk TimeToHalf Total talk time, in seconds, for
completed outbound Preview calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent begins after call work for the
call. The time includes hold time
associated with the call.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-13
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
PreviewCallsTime ToHalf Total handle time, in seconds, for
completed outbound Preview calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent completes after call work time
for the call. The time includes hold
time associated with the call.

PreviewCallsHeldToHalf The total number of completed
outbound Preview calls that agents in
the skill group have placed on hold at
least once.

PreviewCallsHeld TimeToHalf Total number of seconds outbound
Preview calls were placed on hold by
agents in the skill group.

ReservationCallsToHalf Total number of agent reservation calls
completed by agents in the skill group.

ReservationCalls TalkTimeToHalf Total talk time, in seconds, for
completed agent reservation calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent begins after call work for the
call. The time includes hold time
associated with the call.

ReservationCalls TimeToHalf Total handle time, in seconds, for
completed agent reservation calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent completes after call work time
for the call. The time includes hold
time associated with the call.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-14
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
ReservationCalls HeldToHalf The total number of agent reservation
calls that agents in the skill group have
placed on hold at least once.

ReservationCalls HeldTimeToHalf Total number of seconds agent
reservation calls were placed on hold
by agents in the skill group.

BargeInCallsToHalf Total number of supervisor call
barge-ins completed in the skill group.

InterceptCallsTo Half Total number of supervisor call
intercepts completed in the skill group.

MonitorCallsToHalf Total number of supervisor call
monitors completed in the skill group.

WhisperCallsToHalf Total number of supervisor call
whispers completed by agents in the
skill group.

EmergencyCalls ToHalf Total number of emergency calls
completed by agents in the skill group.

CallsQHalf* The number of calls queued to the skill
group during the current half hour.
This field is set to 0xFFFFFFFF when
this value is unknown or unavailable.

CallsQTimeHalf* The total queue time, in seconds, of
calls queued to the skill group during
the current half hour. This field is set to
0xFFFFFFFF when this value is
unknown or unavailable.

LongestCallQHalf* The longest queue time, in seconds, of
all calls queued to the skill group
during the current half hour. This field
is set to 0xFFFFFFFF when this value
is unknown or unavailable.

AvailTimeToday Total seconds agents in the skill group
were in the Available state.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-15
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
LoggedOnTime Today Total time, in seconds, agents in the
skill group were logged on.

NotReadyTime Today Total seconds agents in the skill group
were in the Not Ready state.

AgentOutCalls Today Total number of completed outbound
ACD calls made by agents in the skill
group.

AgentOutCallsTalk TimeToday Total talk time, in seconds, for
completed outbound ACD calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated by the agent to
the time the agent begins after call
work for the call. The time includes
hold time associated with the call.

AgentOutCallsTimeToday Total handle time, in seconds, for
completed outbound ACD calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated by the agent to
the time the agent completes after call
work time for the call. The time
includes hold time associated with the
call.

AgentOutCallsHeldToday The total number of completed
outbound ACD calls agents in the skill
group have placed on hold at least
once.

AgentOutCallsHeldTimeToday Total number of seconds outbound
ACD calls were placed on hold by
agents in the skill group.

HandledCallsToday The number of inbound ACD calls
handled by agents in the skill group.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-16
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
HandledCallsTalk TimeToday Total talk time in seconds for Inbound
ACD calls counted as handled by
agents in the skill group. Includes hold
time associated with the call.

HandledCallsAfter CallTimeToday Total after call work time in seconds
for Inbound ACD calls counted as
handled by agents in the skill group.

HandledCallsTime Today Total handle time, in seconds, for
inbound ACD calls counted as handled
by agents in the skill group. The time
spent from the call being answered by
the agent to the time the agent
completed after call work time for the
call. Includes hold time associated
with the call.

IncomingCallsHeldToday The total number of completed
inbound ACD calls agents in the skill
group placed on hold at least once.

IncomingCallsHeldTimeToday Total number of seconds completed
inbound ACD calls were placed on
hold by agents in the skill group.

InternalCallsRcvd Today Number of internal calls received by
agents in the skill group.

InternalCallsRcvd TimeToday Number of seconds spent on internal
calls received by agents in the skill
group.

InternalCallsHeld Today The total number of internal calls
agents in the skill group placed on hold
at least once.

InternalCallsHeld TimeToday Total number of seconds completed
internal calls were placed on hold by
agents in the skill group.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-17
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
AutoOutCallsToday Total number of AutoOut (predictive)
calls completed by agents in the skill
group.

AutoOutCallsTalk TimeToday Total talk time, in seconds, for
completed AutoOut (predictive) calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent begins after call work for the
call. The time includes hold time
associated with the call.

AutoOutCallsTime Today Total handle time, in seconds, for
completed AutoOut (predictive) calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent completes after call work time
for the call. The time includes hold
time associated with the call.

AutoOutCallsHeld Today The total number of completed
AutoOut (predictive) calls that agents
in the skill group have placed on hold
at least once.

AutoOutCallsHeld TimeToday Total number of seconds AutoOut
(predictive) calls were placed on hold
by agents in the skill group.

PreviewCallsToday Total number of outbound Preview
calls completed by agents in the skill
group.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-18
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
PreviewCallsTalk TimeToday Total talk time, in seconds, for
completed outbound Preview calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent begins after call work for the
call. The time includes hold time
associated with the call.

PreviewCallsTime Today Total handle time, in seconds, for
completed outbound Preview calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent completes after call work time
for the call. The time includes hold
time associated with the call.

PreviewCallsHeld Today The total number of completed
outbound Preview calls that agents in
the skill group have placed on hold at
least once.

PreviewCallsHeld TimeToday Total number of seconds outbound
Preview calls were placed on hold by
agents in the skill group.

ReservationCalls Today Total number of agent reservation calls
completed by agents in the skill group.

ReservationCalls TalkTimeToday Total talk time, in seconds, for
completed agent reservation calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent begins after call work for the
call. The time includes hold time
associated with the call.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-19
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Statistics
ReservationCalls TimeToday Total handle time, in seconds, for
completed agent reservation calls
handled by agents in the skill group.
The value includes the time spent from
the call being initiated to the time the
agent completes after call work time
for the call. The time includes hold
time associated with the call.

ReservationCalls HeldToday The total number of agent reservation
calls that agents in the skill group have
placed on hold at least once.

ReservationCalls HeldTimeToday Total number of seconds agent
reservation calls were placed on hold
by agents in the skill group.

BargeInCallsToday Total number of supervisor call
barge-ins completed in the skill group.

InterceptCallsToday Total number of supervisor call
intercepts completed in the skill group.

MonitorCallsToday Total number of supervisor call
monitors completed in the skill group.

WhisperCallsToday Total number of supervisor call
whispers completed by agents in the
skill group.

EmergencyCalls Today Total number of emergency calls
completed by agents in the skill group.

CallsQToday* The number of calls queued to the skill.
This field is set to 0xFFFFFFFF when
this value is unknown or unavailable.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition
11-20
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Methods
* This statistic is available for TDM switches only. It is not valid for IPCC.

** This statistic is available for IPCC Enterprise only or Network Queuing .

Methods
Table 11-3 lists the SkillGroup object methods.

CallsQTimeToday* The total queue time, in seconds, of
calls queued to the skill group. This
field is set to 0xFFFFFFFF when this
value is unknown or unavailable.

LongestCallQToday* The longest queue time, in seconds, of
all calls queued to the skill group. This
field is set to 0xFFFFFFFF when this
value is unknown or unavailable.

Table 11-2 Skill Group Statistics (continued)

Statistic Definition

Table 11-3 SkillGroup Object Methods

Method Description

GroupStatistics Disables skill group statistic messages.

DumpProperties See Chapter 7, “CtiOs Object.”

EnableSkillGroupStatistics Enables skill group statistic messages.

GetElement See Chapter 7, “CtiOs Object.”

GetNumProperties See Chapter 7, “CtiOs Object.”

GetPropertyName See Chapter 7, “CtiOs Object.”

GetValue See Chapter 7, “CtiOs Object.”

GetValueInt (C++),
GetValueIntObj (Java)

See Chapter 7, “CtiOs Object.”

GetValueString See Chapter 7, “CtiOs Object.”
11-21
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Methods
DisableSkillGroupStatistics
The DisableSkillGroupStatistics method requests that sending real-time statistics
to the skillgroup object be stopped.

Syntax

C++: int DisableSkillGroupStatistics(Arguments & args)
COM: HRESULT DisableSkillGroupStatistics (IArguments * args, int *

errorCode)
VB: DisableSkillGroupStatistics (args As CTIOSCLIENTLib.IArguments,

errorCode As Long)
Java: int DisableSkillGroupStatistics(Arguments args)
.NET: CilError DisableSkillGroupStatistics(Arguments args)

Parameters

args

If this method is called in C++, Java, or .NET via the session object in
monitor mode with the special SkillGroupStats filter, the args parameter has
two required values for PeripheralId and SkillGroupNumber. See the Remarks
section for a code example. Otherwise, this parameter is not used.

errorCode

An output parameter (return parameter in VB) that contains an error code, if
any.

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

IsValid See Chapter 7, “CtiOs Object.”

SetValue See Chapter 7, “CtiOs Object.”

Table 11-3 SkillGroup Object Methods

Method Description
11-22
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Methods
Remarks

The CTI OS server sends skillgroup statistics in an
OnSkillGroupStatisticsUpdated event. If this request is successful, the
OnNewSkillGroupStatistics event is no longer received.

The following is a C++ code example where the args parameter contains values
for PeripheralID and SkillGroupNumber.

Arguments & argsStatBroadcast = Arguments::CreateInstance();
argsStatBroadcast.AddItem(CTIOS_SKILLGROUPNUMBER, intSG);
argsStatBroadcast.AddItem(CTIOS_PERIPHERALID, m_periphID);
m_pSkGrStatSession->DisableSkillGroupStatistics (argsStatBroadcast);
argsStatBroadcast.Release();

DumpProperties
See Chapter 7, “CtiOs Object” for a description of the DumpProperties method.

EnableSkillGroupStatistics
The EnableSkillGroupStatistics method requests that real-time statistics be sent
to the skillgroup object. In an agent mode application, this request is usually made
through the agent object (see Chapter 10, “Call Object”).

Syntax

C++: int EnableSkillGroupStatistics(Arguments & args)
COM: HRESULT EnableSkillgroupStatistics (IArguments * args, int *

errorCode)
VB: EnableSkillgroupStatistics (args As CTIOSCLIENTLib.IArguments,

errorCode As Long)
Java: int EnableSkillGroupStatistics(Arguments args)
.NET CilError EnableSkillGroupStatistics(Arguments args)
11-23
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Methods
Parameters

args

If this method is called via the session object in monitor mode with the
special SkillGroupStats filter, the args parameter has two required values for
PeripheralId and SkillGroupNumber. See the Remarks section for a code
example. Otherwise, this parameter is not used.

errorCode

An output parameter (return parameter in VB) that contains an error code, if
any.

Return Value

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Remarks

CTI OS Server sends skillgroup statistics in an OnSkillGroupStatisticsUpdated
event.

The following is a C++ code example where the args parameter contains values
for PeripheralID and SkillGroupNumber.

Arguments & argsStatBroadcast = Arguments::CreateInstance();
argsStatBroadcast.AddItem(CTIOS_SKILLGROUPNUMBER, intSG);
argsStatBroadcast.AddItem(CTIOS_PERIPHERALID, m_periphID);
m_pSkGrStatSession->EnableSkillGroupStatistics (argsStatBroadcast);
argsStatBroadcast.Release();

GetElement
See Chapter 7, “CtiOs Object” for a description of the GetElement method.

GetValue Methods
See Chapter 7, “CtiOs Object” for descriptions of the GetValue, GetValueInt,
GetValueList, and GetValueString methods.
11-24
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Methods
IsValid
See Chapter 7, “CtiOs Object” for a description of the IsValid method.

SetValue
See Chapter 7, “CtiOs Object” for a description of the SetValue method.
11-25
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 11 SkillGroup Object
Methods
11-26
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Ente

C H A P T E R12

Helper Classes

The CTI OS Client Interface Library usesof several custom data structures. This
chapter describes the CTI OS Helper Classes (data structures). The following
helper classes are distributed with the Client Interface Library:

 • Arg. The Arg structure is the basic data type used in the CIL for any parameter
included in methods or events. Objects of this type allow the CIL to be fully
extensible and reusable. Arg supports many useful types including string,
integer, Boolean, and Arguments array. Arg is the base class for the Arguments
class. In most programming scenarios, programmers will not use Arg directly,
but indirectly through the Arguments class.

 • Arguments. The Arguments structure is used to maintain and send a set of
key-value pairs between the CIL and CTI OS Server for events and requests.
The Arguments array elements must all be of type Arg. The Arguments
structure enables future growth of the CTI OS feature set, without requiring
changes to the method call signature.

 • CilRefArg. The CilRefArg class is a specialized subclass of Arg. It is used to
store a reference to an object derived from CCtiOsObject (C++ only). For
instance, it can hold reference to a CAgent, CCall, CSkillGroup,
CCtiOsSession, or CWaitObject.

 • CCtiosException. The CCtiosException class is used by CTIOS to provide
detailed information when an exception occurs (C++ and Java only). When an
exception is caught as CCtiosException, the programmer can query it for
details such as error codes and error messages.

 • CWaitObject. CWaitObject is a CIL object that derives from CtiOsObject.
It is a utility class (available in all CILs except COM) that enables a thread to
wait for one or more CTI events. The user can provide a list of events along
12-1
rprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arg Class
with a wait timeout. Wait objects are created with the CreateWaitObject
Session Object method and destroyed with the DestroyWaitObject Session
Object method.

 • Logger. The Logger class creates a Logger object and a LogManager object,
if one does not already exist. Any object that needs to perform logging must
instantiate the Logger class. The Logger class communicates with the
singleton LogManager object, which acts as the centralized logging facility.
The Logger class also defines tracing constants.

 • LogWrapper. The LogWrapper class provides a default Logging
mechanism. By default, the LogWrapper traces to the console. If you create
the LogWrapper with a filename, then it traces to that file.

Arg Class
The Arg is a generic class used in parameters or return values in CIL methods.
Information sent by CTI OS server to the CIL in an event is packed in an
Arguments object where each element of the array is an object of type Arg. An
Arg object’s absolute data type is determined by the type of data it stores. The
basic types an object can store are identified by the enumerated constants in
Table 12-2.

Arg class methods will do conversion between types whenever possible. For
example, you can do a SetValue(25) and then do a GetValueString() which will return
the string “25”. You can also do a SetValue(“25”) and then do a GetValueIntObj
which will return an Integer object containing the numeric value 25. However, if you
call SetValue “abc” and try to retrieve it as an int, it will fail.

Table 12-1 lists the available Arg class methods.

Table 12-1 Arg Class Methods

Method Description

AddRef Increments the reference count for the data item.

Clone Creates an exact copy of the Arg object.

CreateInstance Creates an Arg object.

DumpArg Builds a string containing the value stored in the Arg.
12-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arg Class
In many scenarios, programmers will stick to Arguments (see the preceding
section), which wraps many Arg methods and encapsulates a collection of Arg
objects.

AddRef
The AddRef method increments the reference count for the data item. It is
necessary to call this if you are storing a pointer to the item for some time (for
example, if you plan to store and use Arguments received in an event handler after
the event thread has returned to the calling code). When you are finished with the
item, you must call the Release method or a memory leak will result.

Syntax

C++: unsigned long AddRef()
COM: HRESULT AddRef()
VB, Java, .NET: Not used

Parameters

None.

GetType Returns the type of the data stored in the argument (one
of the values in Table 12-2).

GetValueInt
GetValueUInt
GetValueUInt
GetValueUShort
GetValueShort
GetValueBool
GetValueString

Returns the value stored in the argument.

SetValue Sets the data in the Arg object.

Table 12-1 Arg Class Methods (continued)
12-3
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arg Class
Return Values

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”

C++: The current reference count after the AddRef() call.

Clone
The Clone method allocates a new Arg in memory and copies its key, value, and
type to the new instance. When using the C++ or COM CILs, it is important to
release the object when it is no longer needed.

Syntax

C++: Arg & Clone()
COM: HRESULT Clone(/*[out, retval]*/ IArg** arg);
VB: Clone() as CTIOSCLIENTLib.IArg
Java: Arg Clone()
.NET: Ojbect Clone()

Output Parameters

arg

Pointer to an IArg instance that is a copy of the object.

Return Values

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”

Others: If successful, will return a reference to a new Arg object. If unsuccessful
in C++ or VB, it will throw a CCtiosException with iCode set to
E_CTIOS_ARGUMENT_ALLOCATION_FAILED. If unsuccessful in Java, it
returns null but does not throw an exception.
12-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arg Class
CreateInstance
The CreateInstance method creates an object of type Arg class and sets the
reference count of the object to 1. It is important to release the object when it is
no longer in use in the program.

Syntax

C++: static Arg& CreateInstance(); // static creation mechanism.
static Arg& CreateInstance(Arg& arg); // static creation mechanism.
static bool CreateInstance(Arg ** arg); // static creation mechanism,

// alternate version
COM: Wrapped by CoCreateInstance
VB: Wrapped by New
Java, .NET: Not available

Parameters

arg

(output) Pointer to the newly created Arg.

Return Values

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”

Others: Either a reference to the newly created Arg or a boolean indicating
method success. If the methods not returning bool are unsuccessful, they will raise
a CCtiosException with iCode set to
E_CTIOS_ARGUMENT_ALLOCATION_FAILED.

Remarks

Internally this method increments the Arg’s reference count, so do not call
AddRef(). However, you must call Release() after you are finished with the Arg.
12-5
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arg Class
DumpArg
The DumpArg method builds a string containing the value stored in the Arg. This
involves doing any type conversion required to display the data as a string. For
example, it will automatically convert an INTEGER type to a string that can be
logged for debugging. In the event that a Arg object is actually an Arguments
object, the string returned is the one built by Arguments.DumpArg, and thus
enabled printing of nested Arguments structures.

Syntax

C++: string DumpArg()
COM: HRESULT DumpArg([out,retval] BSTR* arg_string);
VB: DumpArg() as String
Java, .NET:Not available. Use the ToString method.

Parameters

arg_string

The pointer to the string into which the contents of the Arg object will be
written.

Return Values

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”

Others: A string containing the contents of the structure.

GetArgType (.NET only)
The GetArgType method returns the type of the contained value. This returned
value will be one of the following:

 • ARG NOTSET

 • ARG_BOOL

 • ARG_SHORT
12-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arg Class
 • ARG_USHORT

 • ARG_INT

 • ARG_UINT

See Table 12-2 for a list of valid types.

Syntax

COM, C++, Java: Use GetType.
.NET: ArgDataType GetArgType()

Parameters

None.

Returns

int code for the type of value contained in this Arg.

GetType
The GetType method returns the type of the data stored by the Arg. See
Table 12-2 for a list of possible types.

Syntax

C++: enumArgTypes GetType()
COM: HRESULT GetType(/*[out, retval]*/ int* type);
VB: GetType () as Integer
Java: int GetType()
.NET: Use the GetArgType method.

Output Parameters

type

Integer that receive the enumerated constant that identifies data type stored
in IArg.
12-7
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arg Class
Return Values

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”

Others: Returns the enumerated value that identifies the data type stored in the
Arg (see Table 12-2),

GetValue Methods
The GetValue method returns the value stored in the object. To extract a specific
type of data you invoke the method designated for it. For more detail on
GetValueArray, GetValueInt, and GetValueString, see the corresponding
methods described in Chapter 7, “CtiOs Object.”

Syntax

C++:int GetValueInt();
unsigned int GetValueUInt();
unsigned shortGetValueUShort();
short GetValueShort();
string& GetValueString();
bool GetValueBool();
bool GetValueInt(int * value);
bool GetValueUInt(unsigned int * value);

Table 12-2 enumArgTypes

Argument Type Description

ARG_NOTSET Argument type not determined

ARG_INT Signed integer

ARG_UINT Unsigned integer

ARG_USHORT 2 bytes unsigned integer

ARG_SHORT 2 bytes signed integer

ARG_BOOL 1 byte integer

ARG_STRING Character string

ARG_ARGARRAY Variable length Arguments array
12-8
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arg Class
bool GetValueUShort(unsigned short * value);
bool GetValueShort(short * psVallue);
bool GetValueBool(bool * value);
bool GetValueString(string* value);

COM: HRESULT GetValue(/*[out, retval]*/ VARIANT* value);
VB: GetValue() as Variant
VB: GetValue (key as String, value as Variant) as Boolean
Java: Integer GetValueIntObj()

Long GetValueUIntObj()
Short GetValueShortObj()
Integer GetValueUShortObj()
Boolean GetValueBoolObj()
String GetValueString()

.NET:System.Boolean GetValueInt(out System.Int32 nValue)

.NET:System.Boolean GetValueUInt(out System.Int64 nValue)

.NET:System.Boolean GetValueShort(out System.Int16 nValue)

.NET:System.Boolean GetValueUShort(out System.Int32 nValue)

.NET:System.Boolean GetValueBool(out System.Boolean bValue)

.NET:System.Boolean GetValueString(out System.String strValue)

Parameters

Value

Output parameter of the specified type containing the value of the Arg.

For COM, this value is of type VARIANT * whose type is one of the types
listed in Table 12-3.

Table 12-3 Variant types supported by GetValue (COM)

Variant Type Standard C++ Type

VT_INT Int

VT_UINT Unsigned int

VT_I2 Short

VT_UI2 Unsigned short

VT_BOOL Bool

VT_BSTR string, const string and char *
12-9
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arg Class
Return Values

C++

Methods taking no parameters, if successful, will return the value in the object;
otherwise, they will raise a CCtiosException with iCode set to
E_CTIOS_INVALID_ARGUMENT.

The methods taking a pointer to the variable receiving the result will return true,
if the method was able to get the value, otherwise, false.

Java

Returns null if method failed.

.NET

Returns false if method failed.

COM

If the method was able to set the variant type of the value (i.e., value->vt) to any
of the types listed in Table 12-3, it returns the value in the appropriate field of the
variant. Otherwise it returns VT_EMPTY.

Release
The Release method decrements the reference count for the data item. It is
necessary to call Release when you are finished with a data item that has had its
reference count incremented via CreateInstance or AddRef; otherwise, a memory
leak will result.

Syntax

C++: unsigned long Release()
COM: HRESULT Release()
VB, Java, .NET: Not used

Parameters

None.
12-10
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arg Class
Return Values

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”

C++: The current reference count after the Release() call.

SetValue
The SetValue method sets the value in the Arg object.

Syntax

C++:bool SetValue(int value);
bool SetValue(unsigned int value);
bool SetValue(unsigned short value);
bool SetValue(short value);
bool SetValue(bool value);
bool SetValue(char * value);
bool SetValue(string& value);
bool SetValue(const string& value);
bool SetValue(Arg & value);

COM: HRESULT SetValue(/*[in]*/ VARIANT * pVariant, /*[out,retval]*/
VARIANT_BOOL * errorcode);
VB: SetValue(value as Variant) as Boolean
Java:boolean SetValue(Arg rArg)

boolean SetValue(int iVal)
boolean SetValue(short nValue)
boolean SetValue(String sValue)
boolean SetValueUInt(long lValue)
boolean SetValueUShort(int iValue

.NET:System.Boolean SetValue(System.Int32 iValue)
System.Boolean SetValueUInt(System.Int64 lValue)
System.Boolean SetValueUShort(System.Int32 iValue)
System.Boolean SetValue(System.Int16 nValue)
System.Boolean SetValue(System.Boolean bValue)
System.Boolean SetValue(System.String sValue)
System.Boolean SetValue(Arg rArg)

Parameters

value
12-11
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arg Class
The value of the specified type to assign to the Arg.

For COM, this value is of type VARIANT * whose type is one of the types
listed in Table 12-4.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

C++

If the method was able to set the value it returns true, otherwise it returns false.

COM, VB

If the method was able to set the value it returns VARIANT_TRUE. Otherwise,
it returns VARIANT_FALSE.

Java, .NET

This method returns true if the method succeeds, otherwise false.

Table 12-4 Supported Variant Types

Variant Type Standard C++ Type

VT_INT Int

VT_UINT Unsigned int

VT_I2 Short

VT_UI2 Unsigned short

VT_BOOL Bool

VT_BSTR string, const string and char *

VT_DISPATCH Pointer to an IArg interface
12-12
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
Arguments Class
The Arguments structure (class) provides key/value support to form a collection
of values. Each value stored in an Arguments structure is associated with a key.
To add an item, use the AddItem or SetValue method and pass a key and a value.
The key must be a string or an enumerated value, and the value can be almost any
type (i.e. all types supported by Arg). To retrieve the item, use the appropriate
GetValue method with a key, and the value is returned. Keys are not case
sensitive, and leading and trailing spaces are always removed from the key.

Arguments also supports access by index. The index is useful for retrieving items
sequentially, but may not be as fast as retrieval by key. The Arguments structure’s
index is 1-based, to provide easier support for Visual Basic programmers.
Internally, the Arguments structure uses a binary tree and other techniques to
provide fast access to any item. Arguments can support a virtually unlimited
number of key-value pairs, and supports nested Arguments structure as well.

Table 12-5 lists the Arguments class methods.

Table 12-5 Arguments Class Methods

Method Description

AddItem Adds an item to an Arguments array.

AddRef Increments the reference count for the
data item.

Clear Deletes all elements from an Arguments
array.

Clone Creates a copy of an Arguments array.

CreateInstance Creates an Arguments array.

DumpArgs Returns Arguments object as a string

GetElement (also GetElementInt,
GetElementUInt,
GetElementUShort,
GetElementShort, GetElementBool,
GetElementString, GetElementArg,
GetElementKey
GetElementArgType)

Returns the value stored under a specified
index.
12-13
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
Usage Notes
When writing an application using the CTI OS SDK, the following sequence of
steps in the program may produce a problem:

 • Programmer passes an Arguments array into a CTI OS SDK method
(methodA)

 • MethodA returns

 • Programmer modifies the same Arguments array

 • Programmer passes the modified Arguments array into another CTI OS SDK
method (methodB)

When running the application, the call to methodA may behave as if it was passed
the modified Arguments array. This is because many CTI OS methods simply
place a pointer to the Arguments array on a queue of items to be sent to CTI OS
server. When the same Arguments array is later modified, as in the preceding
example, the pointer on the queue now points to the modified array and the

GetValue (also GetValueInt,
GetValueUShort, GetValueShort,
GetValueBool, GetValueUInt,
GetValueString, GetValueArray,
GetValueArg)

Returns the value stored under a specified
key.

IsValid Tests if a key is present in the current
Arguments array.

NumElements Returns the number of arguments in the
current Arguments array,.

Release Decrements the reference count for the
data item.

RemoveItem Removes an item from an Arguments
array.

SetElement Sets the value of an index.

SetValue Sets the value of a key.

Table 12-5 Arguments Class Methods (continued)

Method Description
12-14
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
modified array is sent to CTI OS server. A problem may occur depending on
timing, as there are multiple threads involved: the thread pulling items off the
queue and the thread modifying the Arguments array. If the queued message is
sent to CTI OS before the Arguments array is modified, the problem will not
occur.

To avoid this problem, call the Clone method on the initial Arguments array and
modify the copy rather than modifying the original. For example, the preceding
example would change as follows:

 • Programmer passes an Arguments array (initialArray) into a CTI OS SDK
method (methodA)

 • MethodA returns

 • modifiedArray = initialArray.Clone()

 • Programmer modifies modifiedArray

 • Programmer passes the modifiedArray into another CTI OS SDK method
(methodB)

AddItem (C++, COM, VB only)
The AddItem method expects a key-value pair. The key value may be a string or
an integer. The value may be a string, an integer, or an object reference. If there
is an entry with the same key, it will be replaced with this entry, otherwise the
new key-value pair will be added to the arguments array. Keys are not case
sensitive. Leading and trailing spaces are always removed from the key.

Syntax

C++: bool AddItem(std::string& key, int value);
bool AddItem(std::string& key, unsigned int value);
bool AddItem(std::string& key, unsigned short value);
bool AddItem(std::string& key, short value);
bool AddItem(std::string& key, bool value);

bool AddItem(std::string& key, char * pchar);
bool AddItem(std::string& key, std::string& value);
bool AddItem(std::string& key, Arg& value);
bool AddItem(std::string& key, const Arg& value);
bool AddItem(std::string& key, Arguments& value);
bool AddItem(std::string& key, const Arguments& value);
12-15
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
bool AddItem(char * key, int value);
bool AddItem(char * key, unsigned int value);
bool AddItem(char * key, unsigned short value);
bool AddItem(char * key, short value);
bool AddItem(char * key, bool value);

bool AddItem(char * key, char * value);
bool AddItem(char * key, std::string& value);
bool AddItem(char * key, Arg& cArg);
bool AddItem(char * key, const Arg& value);
bool AddItem(char * key, Arguments& value);
bool AddItem(char * key, const Arguments& value);

bool AddItem(enum_Keywords key, int value);
bool AddItem(enum_Keywords key, unsigned int value);
bool AddItem(enum_Keywords key, unsigned short value);
bool AddItem(enum_Keywords key, short value);
bool AddItem(enum_Keywords key, bool value);

bool AddItem(enum_Keywords key, char * value);
bool AddItem(enum_Keywords key, std::string& value);
bool AddItem(enum_Keywords key, Arg& cArg);
bool AddItem(enum_Keywords key, const Arg& value);
bool AddItem(enum_Keywords key, Arguments& value);
bool AddItem(enum_Keywords key, const Arguments& value)

COM: HRESULT AddItem(/*[in]*/ VARIANT *key, /*[in]*/ VARIANT *value,
/*[out,retval]*/ VARIANT_BOOL success) As Boolean;

VB: AddItem(Key as Variant, Value as Variant)
Java, .NET:Not Applicable. Use the SetValue method.

Parameters

key

Key name for the item to be added.

value

Value of the item to be added.

success

An output parameter (return parameter in C++ and VB) that contains a
boolean indicating success or lack thereof.
12-16
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
Return Value

C++: Returns True in if the entry was successfully added, otherwise False.

COM and VB: Standard return values are valid; see Chapter 3, “CIL Coding
Conventions.”

AddRef (C++ and COM only)
The AddRef method increments the reference count for the data item. It is
necessary to call this if you are storing a pointer to the item for some time. When
you are finished with the item, you must call the Release method or a memory leak
will result.

Syntax

C++: unsigned long AddRef()
COM: HRESULT AddRef()
VB, Java, .NET: Not used

Parameters

None.

Return Values

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”

C++: Current reference count.

Others: None.

Clear
The Clear method deletes all the elements from Arguments object.
12-17
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
Syntax

C++: void Clear()
COM: HRESULT Clear()
VB: Clear()
Java, .NET: void Clear()

Parameters

None.

Return Value

None.

Clone
The Clone method creates a copy of the Arguments structure. Because in C++ this
method is implemented in the base class (Arg), it returns a reference to an Arg,
but this is actually a reference to an Arguments array. Therefore, it is necessary
to cast the return value of this method. The following C++ code sample shows this
casting:

Arguments & argsCopy = (Arguments&) argsOrig.Clone ();

To cast in VB, do the following:

Dim Args As CTIOSCLIENTLib.IArguments
Set Args = Orig.Clone()

Syntax

C++: Arg & Clone()
COM: HRESULT Clone(/*[out, retval]*/ IArguments ** args);
VB: Clone() as CTIOSCLIENTLib.IArguments
Java: Arg Clone()
.NET: object Clone()
12-18
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
Parameters

args

An output parameter containing a pointer to an Arguments array that is a copy
of the object.

Return Value

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”

Others: A reference to the Arg structure that is a copy of the object.

CreateInstance (C++ and COM only)
The CreateInstance method creates an object of type Arguments class and sets the
reference count of the object to 1. It is important to release the object when it is
no longer in use in the program.

Syntax

C++: static Arguments & CreateInstance()
static bool CreateInstance(Arguments ** args)

COM: Not exposed, called by CoCreateInstance.
VB: Not exposed, called by New.
Java, .NET:Not implemented.

Parameters

args

A pointer to the newly created Arguments structure.

Return Value

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”
12-19
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
Others: Either a reference to the newly created Arguments structure or a boolean
indicating method success.

Remarks

C++, COM: Internally this method increments the Arg’s reference count, so do
not call AddRef(). However, you must call Release() after you are finished with
the Arg.

DumpArgs
The DumpArgs method builds a string showing all of the members of the
Arguments structure in the form “key1 = value1; key2 = value2;...”. It is primarily
used for debugging.

Syntax

C++: string DumpArgs()
COM: HRESULT DumpArgs([out,retval] BSTR* arg_string);
VB: DumpArgs() as String
Java, .NET:string DumpArgs()

Parameters

arg_string

The pointer to the string containing the contents of the Arguments array
listing all of the key/value pairs in the format of “key1 = value1; key2 =
value2;...”.

Return Values

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”

Others: A string containing the contents of the Arguments array listing all
key/value pairs
12-20
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
GetElement Methods
The GetElement method is similar to GetValue, except that it uses an index value
instead of a key. The index value is not related to the order in which items are
added or removed. The order of items in Arguments is never guaranteed. This
method is useful for sequentially iterating over all items in Arguments. The Index
is 1-based. The Index should never be less than one or greater than NumElements.
see also NumElements method. The GetElementKey returns the key of a given
index.

Syntax

C++: Arg& GetElement(int index);
bool GetElement(int index, Arg ** value);
int GetElementInt(int index);
bool GetElementInt(int index, int * value);
unsigned int GetElementUInt(int index);
bool GetElementUInt(int index, unsigned int * value);
unsigned short GetElementUShort(int index);
bool GetElementUShort(int index, unsigned short * value);
short GetElementShort(int index);
bool GetElementShort(int index, short * value);
bool GetElementBool(int index);
bool GetElementBool(int index, bool * value);
std::string GetElementString(int index);
bool GetElementString(int index, std::string * value);
Arguments& GetElementArg(int index);
bool GetElementArg(int index, Arguments ** key);
std::string GetElementKey(int index);
bool GetElementKey(int nIndex, std::string * key);
bool GetElementKey(int nIndex, int * key);

COM: HRESULT GetElementKey(/*[in]*/ int index, /*[out]*/ BSTR *
key);

HRESULT GetElement(/*[in]*/ int index, /*[out]*/ VARIANT *
value);

VB: GetElement (Integer index, Variant value)
GetElement (Integer index, String key)

Java: Arg GetElement(int iIndex)
Arguments GetElementArguments(int iIndex)
Integer GetElementIntObj(int iIndex)
Long GetElementUIntObj(int iIndex)
Short GetElementShortObj(int iIndex)
Integer GetElementUShortObj(int iIndex)
Boolean GetElementBoolObj(int iIndex)
String GetElementString(int iIndex)
12-21
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
String GetElementKey(int iIndex)
.NET: Boolean GetElement(System.Int32 iIndex, out Arg obArg)

Boolean GetElementInt(System.Int32 iIndex, out System.Int32
iValue)

Boolean GetElementUInt(System.Int32 iIndex, out System.Int64
nValue)

Boolean GetElementUShort(System.Int32 iIndex, out System.Int32
nValue)

Boolean GetElementShort(System.Int32 iIndex, out System.Int16
nValue)

Boolean GetElementBool(System.Int32 iIndex, out System.Boolean
bValue)

Boolean GetElementString(System.Int32 iIndex, out System.String
strValue)

Boolean GetElementArguments(System.Int32 iIndex, out Arguments
argArguments)

Boolean GetElementKey(System.Int32 iIndex, out System.String
strKey)

Parameters
value

An output parameter containing the value of the member at the specified
index.

key

An output parameter containing the key of the member at the specified index.

index

An input parameter containing an index into the Arguments array.

Return Value

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”

Others: Returns either the value at the index specified independently from its
key, or a boolean indicating success or failure.
12-22
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
GetValue Methods
The GetValue methos return the value stored under a key. The existence of a key
can be tested using IsValid. Keys are not case sensitive. Leading and trailing
spaces are always removed from the key. For more detail on GetValueArray,
GetValueInt, and GetValueString, see the corresponding methods described in
Chapter 7, “CtiOs Object.”

Syntax

C++: Arg& GetValue(enum_Keywords eKey);
bool GetValue(enum_Keywords key, Arg ** value);
Arg& GetValue(std::string& key);
bool GetValue(std::string& key, Arg ** value);
Arg& GetValueArg(std::string& key);
bool GetValueArg(std::string& key, Arg ** value);
int GetValueInt(enum_Keywords key); /*throws exception*/
bool GetValueInt(enum_Keywords key, int * value);
unsigned int GetValueUInt(enum_Keywords key);
bool GetValueUInt(enum_Keywords key, unsigned int * value);
unsigned short GetValueUShort(enum_Keywords key);
bool GetValueUShort(enum_Keywords key, unsigned short *
value);
short GetValueShort(enum_Keywords key);
bool GetValueShort(enum_Keywords key, short * value);
bool GetValueBool(enum_Keywords key);
bool GetValueBool(enum_Keywords key, bool * value);
std::string GetValueString(enum_Keywords key);
bool GetValueString(enum_Keywords key, std::string * value);
int GetValueInt(std::string& key); /*throws exception*/
bool GetValueInt(std::string& key , int * value);
unsigned int GetValueUInt(std::string& key);
bool GetValueUInt(std::string& key , unsigned int * value);
unsigned short GetValueUShort(std::string& key);
bool GetValueUShort(std::string& key , unsigned short *
value);
short GetValueShort(std::string& key);
bool GetValueShort(std::string& key , short * value);
bool GetValueBool(std::string& key);
bool GetValueBool(std::string& key , bool * value);
std::string GetValueString(std::string& key);
bool GetValueString(std::string& key , std::string * value);
Arguments& GetValueArray(std::string& key);
bool GetValueArray(std::string& key , Arguments ** value);
Arguments& GetValueArray(enum_Keywords key);
12-23
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
bool GetValueArray(enum_Keywords key , Arguments ** value);
Arg& GetValue(char * key);
bool GetValue(char * key, Arg ** value);
Arguments& GetValueArray(char * key);
bool GetValueArray(char * key, Arguments ** value);
int GetValueInt(char * key);
bool GetValueInt(char * key, int * value);
unsigned int GetValueUInt(char * key);
bool GetValueUInt(char * key, unsigned int * value);
unsigned short GetValueUShort(char * key);
bool GetValueUShort(char * key, unsigned short * value);
short GetValueShort(char * key);
bool GetValueShort(char * key, short * value);
bool GetValueBool(char * key);
bool GetValueBool(char * key, bool * value);
std::string GetValueString(char * key);
bool GetValueString(char * key, std::string * value);
Arg& GetValueArg(char * key);
bool GetValueArg(char * key, Arg ** value);

COM: HRESULT GetValue(/*[in]*/ BSTR key, /*[out, retval]*/ VARIANT *
pVvalue);

HRESULT GetValueInt(/*[in]*/ VARIANT *key, /*[out, retval]*/
int *value);

HRESULT GetValueString(/*[in]*/ VARIANT *key, /*[out, retval]*/
BSTR *value);

HRESULT GetValueArray(/*[in]*/ VARIANT *key, /*[out, retval]*/
IArguments **pArguments);

HRESULT GetValueBool(/*[in]*/ VARIANT *key, /*[out, retval]*/
VARIANT_BOOL * value);

VB: GetValue (Key as String) as Variant
GetValue(key As Variant) As Arg
GetValueArray(key As Variant) As Arguments
GetValueBool(key As Variant) As Boolean
GetValueInt(key As Variant) As Long
GetValueString(key As Variant) As String

Java: Arg GetValue(int iKey)
Arg GetValue(String sKey)
Arguments GetValueArray(int iKey)
Arguments GetValueArray(String sKey)
Integer GetValueIntObj(int iKey)
Integer GetValueIntObj(String sKey)
Long GetValueUIntObj(int iKey)
Long GetValueUIntObj(String sKey)
Short GetValueShortObj(int iKey)
Short GetValueShortObj(String sKey)
Integer GetValueUShortObj(int iKey)
Integer GetValueUShortObj(String sKey)
Boolean GetValueBoolObj(int iKey)
12-24
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
Boolean GetValueBoolObj(String sKey)
String GetValueString(int iKey)
String GetValueString(String sKey)

.NET: Boolean GetValue(System.String sKey, out Arg obArg)
Boolean GetValueInt(System.String sKey, out System.Int32

nValue)
Boolean GetValueUInt(System.String sKey, out System.Int64

nValue)
Boolean GetValueShort(System.String sKey, out System.Int16

nValue)
Boolean GetValueUShort(System.String sKey,out System.Int32

nValue)
Boolean GetValueBool(System.String sKey, out System.Boolean

bValue)
Boolean GetValueString(System.String sKey, out System.String

strValue)
Boolean GetValueArray(System.String sKey, out Arguments

arArguments)
Boolean GetValue(Enum_CtiOs eKey, out Arg obArg)
Boolean GetValueInt(Enum_CtiOs eKey, out System.Int32 nValue)
Boolean GetValueShort(Enum_CtiOs eKey, out System.Int16 nValue)
Boolean GetValueUShort(Enum_CtiOs eKey, out System.Int32

nValue)
Boolean GetValueBool(Enum_CtiOs eKey, out System.Boolean

bValue)
Boolean GetValueString(Enum_CtiOs eKey, out System.String

strValue)
Boolean GetValueArray(Enum_CtiOs eKey, out Arguments

arArguments)

Parameters

An enumerated keyword (see Appendix A, “CTI OS Keywords and Enumerated
Types”) or a string specifying the keyword of the value to be retrieved.

Return Values

In C++, the two-parameter version returns a boolean indicating success or failure.
The one- parameter version returns the value and throws an exception upon
failure.

COM returns an HRESULT. See also Chapter 3, “CIL Coding Conventions.”

Java methods return a null object if the method fails.
12-25
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
Remarks

Visual Basic's Integer type is a 16-bit integer. However, the GetValueInt method
returns a 32-bit integer. Thus, in Visual Basic the return type for GetValueInt is
actually a Visual Basic type Long. Visual Basic Programmers can use the
GetValueInt method and receive the return value as an Integer, and Visual Basic
will perform an implicit cast. However, if the value retrieved is a 32-bit integer,
an overflow error will occur. To resolve this error, it is recommended that you use
a 32-bit integer (Long).

Those methods that do not return a bool indicating success or failure will throw a
CtiosException if the method fails. The most common reasons for failure are
NULL key or element with specified key not found.

IsValid
The IsValid method returns True if the specified key exists in the current
Arguments array, otherwise it returns False.

Syntax

C++: bool IsValid(std::string& key);
bool IsValid(char * key);
bool IsValid(Arg& arg);
bool IsValid(enum_Keywords key);

COM: HRESULT IsValid(/*[in]*/ VARIANT* key, /*[out, retval]*/
VARIANT_BOOL* bIsvalid);

VB: IsValid (key as string) as Boolean
Java, .NET: boolean IsValid(int key)

boolean IsValid(String key)
boolean IsValid(Arg rArg)

Parameters

key/arg

Either the key of the desired Arguments member or an Arg containing a string
key.
12-26
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
C++ and COM allow you to specify the key as string or enumerated (see
Appendix A, “CTI OS Keywords and Enumerated Types”); all others expect
the key as a string.

Return Values

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”

Others: True if key exists in the current Arguments array, otherwise False.

NumElements
The NumElements method returns number of elements stored in the current
arguments array. This method is useful in combination with GetElement to
implement a “for” loop to iterate over all values of an arguments array without
knowing the keywords (those can be retrieved at the same time using
GetElementKey).

Syntax

C++: int NumElements();
COM: HRESULT NumElements(/*[out, retval]*/ int * num_elements);
VB: NumElements as Integer
Java: int NumElements()
.NET: int NumElements()

Parameters

num_elements

Pointer to an integer value containing the number of elements in the
Arguments array.

Return Value

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”
12-27
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
Others: Number of elements in arguments array.

Release (C++ and COM only)
The Release method decrements the reference count for the data item. It is
necessary to call Release when you are finished with a data item that has had its
reference count incremented via CreateInstance or AddRef; otherwise, a memory
leak will result.

Syntax

C++: unsigned long Release()
COM: HRESULT Release()
VB, Java, .NET: Not used

Parameters

None.

Return Values

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”

C++: The current reference count after the Release() call.

RemoveItem
The RemoveItem method removes a value and its associated key from an
arguments array. Subsequent attempts to access a value that was removed using
RemoveItem will fail.

Syntax

C++:bool RemoveItem(std::string& key);
bool RemoveItem(char * key);
bool RemoveItem(enum_Keywords key);
12-28
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
COM: HRESULT RemoveItem(/*[in]*/ VARIANT* key, /*[out, retval]*/
VARIANT_BOOL* bSuccess);

VB: RemoveItem (key as Variant) as Boolean
Java: boolean RemoveItem(int key)

boolean RemoveItem(String key)

Parameters

key

The key to use to locate and remove the item in the Arguments array. Leading
and trailing spaces are always removed from the key.

Return Values

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”

Others: Returns true if the entry was located and removed.

SetElement (C++, COM, and VB only)
The SetElement method is identical to SetValue (which is similar to AddItem),
except that it uses an index value instead of a key.

Syntax

C++: bool SetElement(int index, int value);
bool SetElement(int index, unsigned int value);
bool SetElement(int index, unsigned short value);
bool SetElement(int index, short value);
bool SetElement(int index, bool value);
bool SetElement(int index, std::string& value);
bool SetElement(int index, char * pchar);
bool SetElement(int index, Arg& value);
bool SetElement(int index, Arguments& value);

COM: HRESULT SetElement(/*[in]*/ int index, /*[in]*/ VARIANT *
value, /*[out,retval]*/ success);

VB: SetElement (index as Integer, value as Variant) as Boolean
Java: Not available.
.NET: Not available.
12-29
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
Parameters

index

The index at which the value is to be set. This index value is not related to the
order in which items are added or removed. The order of items in Arguments
is never guaranteed. This method is useful for sequentially iterating over all
items in Arguments. Index is 1-based. Index should never be less than 1 or
greater than NumElements (see above). C++ implements several overloaded
methods for different value types, while COM and VB use Variants.

value

The associated value to be set in the element at the designated index.

success

Output parameter (return parameter in C++ and VB) containing a boolean
indicating success or failure.

Return Values

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”

Others: A boolean indicating success or failure.

SetValue
The SetValue method sets a value for a key. Keys are not case sensitive. Leading
and trailing spaces are always removed from the key.

Syntax

C++: bool SetValue(std::string& key, int value);
 bool SetValue(std::string& key, unsigned int value);
 bool SetValue(std::string& key, unsigned short value);
 bool SetValue(std::string& key, short value);
 bool SetValue(std::string& key, bool value);

 bool SetValue(std::string& key, std::string& value);
 bool SetValue(std::string& key, char * pchar);

 bool SetValue(std::string& key, Arg& value);
 bool SetValue(std::string& key, Arguments& value);
12-30
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
 bool SetValue(std::string& key, const Arguments& value);
 bool SetValue(char * key, int value);
 bool SetValue(char * key, unsigned int value);
 bool SetValue(char * key, unsigned short value);
 bool SetValue(char * key, short value);
 bool SetValue(char * key, bool value);
 bool SetValue(char * key, std::string& value);
 bool SetValue(char * key, char * value);
 bool SetValue(char * key, Arg& value);
 bool SetValue(char * key, Arguments& value);
 bool SetValue(char * key, const Arguments& value);
 bool SetValue(enum_Keywords key, int value);
 bool SetValue(enum_Keywords key, unsigned int value);
 bool SetValue(enum_Keywords key, unsigned short value);
 bool SetValue(enum_Keywords key, short value);
 bool SetValue(enum_Keywords key, bool value);
 bool SetValue(enum_Keywords key, std::string& value);

 bool SetValue(enum_Keywords key, Arg& value);
 bool SetValue(enum_Keywords key, const Arg& value);

 bool SetValue(enum_Keywords key, Arguments& value);
 bool SetValue(enum_Keywords key, const Arguments&

cArguments);
 bool SetValue(enum_Keywords key, char * value);

COM: HRESULT SetValue(/*[in]*/ VARIANT* key, /*[in]*/ VARIANT*
value,/*[out, retval]*/ VARIANT_BOOL* success);

VB: SetValue (key as String, value as Variant) as Boolean
Java: boolean SetValue(Arguments rArguments)

boolean SetValue(int iKey, Arg rArg)
boolean SetValue(String sKey, Arg rArg)
boolean SetValue(int iKey, int iVal)
boolean SetValue(String sKey, int iVal)
boolean SetValue(int iKey, short nValue)
boolean SetValue(String sKey, short nValue)
boolean SetValue(int iKey, String sValue)
boolean SetValue(String sKey, String sValue)
boolean SetValueUInt(int iKey, long lValue)
boolean SetValueUInt(String sKey, long lValue)
boolean SetValueUShort(int iKey, int iValue)
boolean SetValueUShort(String sKey, int iValue)
boolean SetValue(int iKey, Arg rArg)

.NET: System.Boolean SetValueArguments(Arguments rArguments)
System.Boolean SetValue(System.String sKey, System.Int32

iValue)
System.Boolean SetValueUInt(System.String sKey, System.Int64

lValue)
System.Boolean SetValue(System.String sKey, System.Int16

nValue)
System.Boolean SetValueUShort(System.String sKey, System.Int32
12-31
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Arguments Class
iValue)
System.Boolean SetValue(System.String sKey, System.String

sValue)
System.Boolean SetValue(System.String sKey, Arg rArg)
System.Boolean SetValue(Enum_CtiOs eKey, System.Int32 iValue)
System.Boolean SetValueUInt(Enum_CtiOs eKey, System.Int64

lValue)
System.Boolean SetValue(Enum_CtiOs eKey, System.Int16 nValue)
System.Boolean SetValueUShort(Enum_CtiOs eKey, System.Int32

iValue)
System.Boolean SetValue(Enum_CtiOs eKey, System.Boolean bValue)
System.Boolean SetValue(Enum_CtiOs eKey, System.String sValue)
System.Boolean SetValue(Enum_CtiOs eKey, Arg rArg)

Parameters

key

The key whose value is to be set.

value

The value to use in setting the element with the designated key.

success

Output parameter (return parameter in C++ and VB) containing a boolean
indicating success or failure.

Return Values

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”

Others: A boolean indicating success or failure.

Remarks

The C++ methods overload several implementations for different value types and
allow to specify a key via enumerated keywords (see Appendix A, “CTI OS
Keywords and Enumerated Types”) as well as string. COM and VB use String
keywords and Variants as values.
12-32
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
CILRefArg Class (C++, Java, and .NET only)
CILRefArg Class (C++, Java, and .NET only)
The CILRefArg class is a subclass of the Arg class. Its main responsibility is to
store a reference of a CCtiOsObject object (see Chapter 7, “CtiOs Object”). This
class allows object references to be included in argument structure. The object
types that can be used are any of the following: CAgent, CCall, CSkillGroup,
CWaitObject or CCtiOsSession.

In addition to the methods inherited from the Arg class, the CILRefArg class
contains the methods listed in Table 12-6.

GetType
The GetType method returns the type of the data stored by the Arg. For a
CilRefArg, this will always be ARG_REFERENCE.

Syntax

C++: enumArgTypes GetType()
COM: HRESULT GetType(/*[out, retval]*/ int* type);
VB: GetType () as Integer
Java: int GetType()
.NET: Use the GetArgType method.

Table 12-6 CILRefArg Class Methods

Method Description

GetType Returns the ARG_REFERENCE.

GetUniqueObjectID Returns the UID of the contained CtiOsObject

GetValue Returns the encapsulated pointer in the object.

SetValue Encapsulates the pointer to CTI OS object into the
CILRefArg object.
12-33
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
CILRefArg Class (C++, Java, and .NET only)
Output Parameters

type

Integer that receives the enumerated constant that identifies the data type
stored in Arg. In this case, that data type will be ARG_REFERENCE.

Return Values

COM: Default HRESULT return values. See Chapter 3, “CIL Coding
Conventions.”

Others: Returns the enumerated value that identifies the data type stored in the
Arg (see Table 12-2). For CilRefArg, this will always be ARG_REFERENCE.

GetUniqueObjectID (Java and .NET only)
The GetUniqueObjectID method returns the unique objectID of the contained
CtiOsObject.

Syntax

String GetUniqueObjectID()

Parameters

None.

Return Values

If successful, it returns the unique objectID of the contained CtiOsObject. If no
object is contained in the CilRefArg, it returns null.

Remarks

To obtain a unique object ID in C++, use bool GetValueString(string* pString).
12-34
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
CILRefArg Class (C++, Java, and .NET only)
GetValue
The GetValue method returns the reference to CTI OS object encapsulated in the
CILRefArg.

Syntax

C++: CCtiOsObject * GetValue():
Java: CCtiOsObject GetValue();
.NET: System.Boolean GetValue(out CtiOsObject sValue)

Output Parameters

.NET:sValue

Reference to the contained CtiOsObject derived class.

Return Values

C++: Returns NULL on failure.

.NET: Returns false if the method fails.

Java: Returns a null reference if the method fails.

SetValue
Sets the reference to the CTI OS Object in the CILRefArg.

Syntax

bool SetValue(CCtiOsObject * pObject);

Input Parameters

pObject

A pointer to a CtiOsObject to encapsulate (e.g. CCall, CAgent, etc.)
12-35
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
CCtiOsException Class (C++, Java, and .NET only)
Return Values

If the method was able to set the reference it returns true. Otherwise, it returns
false.

CCtiOsException Class (C++, Java, and .NET only)
The CCtiosException class is normally used within the Arguments class. It
provides access to additional information when exceptions are thrown, such as
what parameter is in error, memory allocation failed, and so on.

Table 12-7 lists the available CCtiOsException class methods.

CCtiosException Constructor
The CCtiosException constructor initializes an object of type CCtiosException.

Syntax

C++, Java, .NET: CCtiosException(const char *pMsg, int iCode, int
iStatus);
C++: CCtiosException(const string& rstrMsg, int iCode, int iStatus);

Table 12-7 CCtiOsException Class Methods

Method Description

CCtiosException Class constructor.

GetCode Returns the error code that generated the exception.

GetStatus Returns the error status that generated the exception.

GetString Returns a text string containing the description of
the exception.

What Returns a text string containing the description of
the exception, the code of an error and the status.
12-36
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
CCtiOsException Class (C++, Java, and .NET only)
Input Parameters

pMsg

Pointer to string that holds a description of an error.

iCode

Number that identifies an error.

iStatus

Status of an error.

rstrMsg

An STL string that holds a description of an error.

Return Values

None.

GetCode
The GetCode method returns the error code that generated the exception.

Syntax

C++, Java, .NET: int GetCode();

Parameters

None.

Return Values

Returns an integer error code that generated the exception. The errors are
described in the Cilerror.h include file – see also Appendix A, “CTI OS Keywords
and Enumerated Types.”
12-37
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
CCtiOsException Class (C++, Java, and .NET only)
GetStatus
The GetStatus method returns the error status that generated the exception.

Syntax

C++, Java, and .NET: int GetStatus ();

Parameters

None.

Return Values

Returns an integer error status that generated the exception.

GetString
The GetString method returns a text string containing the description of the
exception.

Syntax

C++: const char* GetString();
Java, .NET: String GetString();

Parameters

None.

Return Values

Returns a text string containing the description of the exception.
12-38
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
CWaitObject Class
What
The What method returns a text string containing the description of the exception,
the code of an error, and the status.

Syntax

const char* What();

Parameters

None.

Return Values

Returns a text string containing the description of the exception, the code of an
error, and the status.

CWaitObject Class
CWaitObject is a CIL object that derives from CtiOsObject. It is a utility class that
enables a thread to wait for one or more CTI events. The user can provide a list of
events along with a wait timeout. Wait objects are created with the
CreateWaitObject Session Object method and destroyed with the
DestroyWaitObject Session Object method.

Warning You must not use a WaitObject instance within an event handler. Events are
sent to desktop applications by a single thread in the CIL. If that thread is
blocked while waiting for a specific event, the thread will deadlock and the
event handler will not receive any more events.

Methods
Table 12-8 list the CWaitObject class methods.
12-39
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
CWaitObject Class
CreateWaitObject
See Chapter 8, “Session Object.”

DestroyWaitObject
See Chapter 8, “Session Object.”

DumpEventMask
The DumpEventMask method returns a printable string listing the events in the
CWaitObject’s mask.

Table 12-8 CWaitObject Class Methods

Method Description

CreateWaitObject See Chapter 8, “Session Object.”

DestroyWaitObject See Chapter 8, “Session Object.”

DumpEventMask Returns a printable string listing the events in the
CWaitObject’s mask

GetMask Sets a user provided pointer to an Arguments object
that contains the list of events that the object will
wait for.

GetTriggerEvent Gets the ID of the event that triggered the
WaitOnMultipleEvents method to wake.

InMask Returns true if the specified event ID is in the list of
events that the object will wait for.

SetMask Set the list of events that the object will wait for.

WaitOnMultipleEvents Waits for the events in the object’s event mask for
the specified time period or until one of the events
occurs.
12-40
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
CWaitObject Class
Syntax

C++ , Java, .NET: string DumpEventMask();

Parameters

None.

Return Values

A printable string object listing the events in the wait mask.

GetMask
The GetMask method gets the list of events that the CWaitObject will wait for.

Syntax

C++: bool GetMask(Arguments ** pMask);
Java, .NET: Arguments GetMask();

Parameters

pMask

A pointer to an Arguments object pointer. GetMask will set the value of
pMask to a pointer to an Arguments object that contains the event mask.

Return Values

If the method was able to get the mask it returns true; otherwise, it returns false.
For Java and .NET, the method returns null upon failure.
12-41
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
CWaitObject Class
GetTriggerEvent
The GetTriggerEvent method returns the ID of the last event in the CWaitObject’s
mask that triggered the WaitOnMultipleEvents method to wake.

Syntax

C++: EnumCTIOS_EventID GetTriggerEvent()
Java: int GetTriggerEvent()
.NET: EventID GetTriggerEvent()

Parameters

None.

Return Values

The ID of the event or eUnknownEvent if no event triggered a wakeup.

InMask
The InMask method checks to see if the specified event is in the mask of events
that the CWaitObject will wait for.

Syntax

C++: bool InMask(int iEventId);
Java, .NET: boolean InMask(int iEventId);

Parameters

iEventId

The enumerated event ID of the event to check for.
12-42
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
CWaitObject Class
Return Values

If the event is in the mask it returns true. Otherwise, it returns false.

SetMask
The SetMask method sets the list of events that the CWaitObject will wait for.

Syntax

C++: bool SetMask(Arguments & args);
Java, .NET: boolean SetMask(Arguments rArgs);

Parameters

args

A reference to an Arguments object containing the list of events to wait for.
The Arguments should contain values where the keys are “Event1” through
“EventN” and the values are the enumerated event IDs.

Return Values

If the method was able to set the mask it returns true. Otherwise it returns false.

WaitOnMultipleEvents
The WaitOnMultipleEvents method waits for the events in the CWaitObject’s
wait mask or returns if one of the events has not occurred after the specified
timeout period. This is a “one of” method which returns after one of the specified
events occurs.

Syntax

C++: int WaitOnMultipleEvents(DWORD dwMilliseconds = INFINITE);
Java, .NET: int WaitOnMultipleEvents(long iMilliseconds);
12-43
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Logger Class (.NET and Java Only)
Parameters

Milliseconds

The maximum length of time in milliseconds to wait before timing out. The
default is INFINITE if called without arguments. For Java and .NET, a value
of zero will cause this method to wait infinitely.

Return Values

The WaitOnMultipleEvents method returns one of the values listed in Table 12-9.

Logger Class (.NET and Java Only)
The Logger class creates a Logger object and a LogManager object, if one does
not already exist. Any object that needs to perform logging must instantiate the
Logger class. The Logger class communicates with the singleton
LogManager object, which acts as the centralized logging facility. The
Logger class also defines tracing constants.

Methods
Table 12-8 list the methods in the Logger class.

Table 12-9 WaitOnMultipleEvents Return Values

Value When Returned

EVENT_SIGNALED If one of the events in the mask occurred.

EVENT_WAIT_TIMEDOUT If the timeout period elapsed.

WAIT_FAILED If unable to wait on the events in the mask.
12-44
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Logger Class (.NET and Java Only)
Logger() Constructor
The Logger constructor creates a Logger object and also a LogManager object if
one does not already exist. If a LogManager exists, the Logger gets a gets a
reference to the existing singleton LogManager object.

Syntax

void Logger()

Parameters

None.

Return Values

None.

Table 12-10 CWaitObject Class Methods

Method Description

AddLogListener Registers a listener with the LogManager.

GetTraceMask Gets the current trace mask. Trace masks define
trace levels, such as TRACE_MASK_CRITICAL,
which enables tracing for critical errors. See the
LogManager Javadoc for a description of trace
masks that define tracing

Logger (Constructor) Creates a Logger object and also a LogManager
object if one does not already exist. If one has
already been created, it just gets a reference to the
existing singleton LogManager object.

RemoveLogListener Unregisters a listener from the LogManager.

SetTraceMask Sets the current trace mask.

Trace Send a trace message to the central LogManager
with the specified trace mask.
12-45
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Logger Class (.NET and Java Only)
GetTraceMask
The GetTraceMask method gets the current trace mask.

Syntax

int GetTraceMask()

Parameters

None.

Return Values

An int containing the current trace mask.

SetTraceMask
The SetTraceMask method sets the current trace mask.

Syntax

void SetTraceMask(int iTraceMask)

Parameters

iTraceMask

An int containing the trace mask.

Return Values

None.
12-46
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
Logger Class (.NET and Java Only)
AddLogListener
The AddLogListener method registers a listener with the LogManager.

Syntax

Java: void AddLogListener(ILogListener rListener)
.NET: void AddLogListener (LogEventHandler rListener)

Parameters

rListener

Java: Reference to the new listener.
.NET: Reference to a LogManager LogEventHandler delegate.

Return Values

None.

RemoveLogListener
The RemoveLogListener method unregisters a listener from the
LogManager.

Syntax

Java: void RemoveLogListener(ILogListener rListener)
.NET: void RemoveLogListener (LogEventHandler rListener)

Parameters

rListener

Java: Reference to the listener to be removed.
.NET:Reference to a LogManager LogEventHandler delegate to be removed.
12-47
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
LogWrapper Class (.NET and Java Only)
Return Values

None.

Trace
The Trace method sends a trace message to the central LogManager with the
specified trace mask. If the trace mask set on the Logger contains all the bits in
the trace mask that is passed into this method, the LogManager will send the trace
string to all log listeners.

Syntax

int Trace(int iTraceMask, String sMessage)

Parameters

traceMask

Trace mask for this message.

traceMessage

String containing trace message.

Return Values

int 0 if traced; -1 if not traced.

LogWrapper Class (.NET and Java Only)
The LogWrapper class instantiates the default logging mechanism. By default, the
LogWrapper writes trace messages to System.Console.Out. If you instantiate the
LogWrapper by passing it a filename, then the LogWrapper writes trace messages
to the specified file.
12-48
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
LogWrapper Class (.NET and Java Only)
Methods
Table 12-8 list the LogWrapper class methods.

Table 12-11 LogWrapper Class Methods

Method Description

Dispose Releases system resources used by the
LogWrapper. (.NET only)

GetMaxDaysBeforeExpire
(.NET Only)

Obtains the current log file age threshold
beyond which the active log file will be rolled
over into a new file regardless of file size

GetMaxFileSize(.NET only) Obtains the current log file size threshold
beyond which a new file will be created.

GetMaxNumberOfFiles (.NET
Only)

Obtains the current number of log files
threshold beyond which older files will begin
to be deleted.

GetTraceMask Gets the current trace mask.

LogWrapper()
Constructor

Creates a new LogWrapper object that writes
tracing messages to System.Console.Out.

LogWrapper (String fileName)
Constructor

Creates a new LogWrapper object that traces
to the file specified in the fileName
parameter.

LogWrapper (string, int, int, int) Creates a new LogWrapper object that traces
to the file specified in the fileName parameter
and sets all the provided tracing properties. If
the corresponding parameter value is set to 0
then the default value will be used.

SetMaxDaysBeforeExpire Changes the current log file age threshold
beyond which the active log file will be rolled
over into a new file regardless of file size

SetMaxFileSize Changes the current log file size threshold
beyond which a new file will be created.

SetMaxNumberOfFiles Changes the current number of log files
threshold beyond which older files will begin
to be deleted.
12-49
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
LogWrapper Class (.NET and Java Only)
LogWrapper() Constructor
The LogWrapper constructor creates a new LogWrapper object that writes tracing
messages to System.Console.Out. This constructor also creates an instance of the
LogManager, if one does not already exist. If you are using the .NET CIL, call the
Dispose method to release system resources when the LogWrapper is no longer
needed.

Syntax

void LogWrapper()

Parameters

None.

Return Values
None.

SetTraceMask Sets the current trace mask.

UpdateTraceSettings Parses TraceConfig.cfg and imports the
settings contained within.

WriteTraceLine Prints a string to the active trace file or to
System.Console.Out if no active trace file
exists.

Table 12-11 LogWrapper Class Methods (continued)

Method Description
12-50
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
LogWrapper Class (.NET and Java Only)
LogWrapper(String filename) Constructor
This constructor creates a new LogWrapper object that traces to the file specified
in the fileName parameter. If you are using the .NET CIL, call the Dispose
method to release system resources when the LogWrapper is no longer needed.

Syntax

void LogWrapper (string sFileName)

Parameters

sFileName

Name of the trace file.

Return Values
None.

LogWrapper(string, int, int, int) Constructor
Creates a new LogWrapper object that traces to the file specified in the fileName
parameter and sets all the provided tracing properties. If the corresponding
parameter value is set to 0 then the default value will be used. If you are using the
.NET CIL, call the Dispose method to release system resources when the
LogWrapper is no longer needed.

Syntax

JAVA: void LogWrapper (string sFileName, long iMaxSize, int
iArchives, int iFlushIntervalMs)
.NET: void LogWrapper (string sFileName, int maxSizeKB, int maxFiles,
int daysUntilExpiration)
12-51
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
LogWrapper Class (.NET and Java Only)
Parameters

.NET and Java:sFfileName

Name of the trace file.

.NET:maxSizeKB

Maximum size of a single trace file in KB (default is 2048 KB).

Java:iMaxSize

Maximum size of a single trace file.

.NET:maxFiles

Maximum number of trace files to create before older files are deleted
(default is 4).

Java:iArchives

Maximum number of trace files stored.

.NET:daysUntilExpiration

Maximum age (in days) of the active trace file before it is rolled over to a new
file regardless of size (default is 1 day) .

Java:iExpires

Number of days before the trace file expires.

Java:iFlushIntervalMs

Number of milliseconds before data is flushed to the trace file. There is no
.NET counterpart for this parameter.

Return Values

None.

Dispose (.NET Only)
The Dispose method releases system resources used by the LogWrapper.
12-52
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
LogWrapper Class (.NET and Java Only)
Syntax

void Dispose ()

Parameters

None.

Return Values

None.

GetMaxDaysBeforeExpire (.NET Only)
The GetMaxDaysBeforeExpire method gets the current log file age threshold
beyond which the active log file will be rolled over into a new file regardless of
file size.

Syntax

int GetMaxDaysBeforeExpire ()

Parameters

None.

Return Values

Current age threshold.

SetMaxNumberFiles
The SetMaxNumberFiles method changes the current number of log files
threshold beyond which older files will begin to be deleted. If the provided value
is not greater than zero, the default value of 4 is used.
12-53
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
LogWrapper Class (.NET and Java Only)
Syntax

.NET:void SetMaxNumberFiles (int maxFiles)
Java:void SetMaxNumberFiles (int iArchives)

Parameters

maxTraceFiles

New number of files threshold. If 0 is specified, the default value will be used

Return Values

None.

GetMaxNumberFiles (.NET Only)
The GetMaxNumberFiles method gets the current number of log files threshold
beyond which older files will begin to be deleted.

Syntax

int GetMaxNumberFiles ()

Parameters

None.

Return Values

Current number of files threshold.
12-54
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
LogWrapper Class (.NET and Java Only)
SetMaxDaysBeforeExpire
The SetMaxDaysBeforeExpire method changes the current log file age threshold
beyond which the active log file will be rolled over into a new file regardless of
file size.

Syntax

Java:void SetMaxDaysBeforeExpire (int iExpires)
.NET:void SetMaxDaysBeforeExpire (int maxDaysUntilExpiration)

Parameters

maxDaysUntilExpiration

New age threshold. If value is not greater than zero, the default value of 1 is
used.

Return Values

None.

ProcessConfigFile
The ProcessConfigFile method opens the default config file (TraceConfig.cfg) in
the parent directory and updates LogWrapper trace settings with data from the
config file.

Syntax

boolean ProcessConfigFile()

Parameters

None.
12-55
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 12 Helper Classes
LogWrapper Class (.NET and Java Only)
Return Values

Returns true if operation succeeded and false if unable to open
theTraceConfig.cfg file.
12-56
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Ente

C H A P T E R13

SilentMonitorManager Object

The SilentMonitorManager Object provides developers with an interface to silent
monitor behavior. The SilentMonitorManager object exposes methods to perform
all silent monitor tasks, such as starting, stopping and managing silent monitor
sessions. The SilentMonitorManager object stores specific silent monitor session
information as properties.

The SilentMonitorManager object can be used in two different modes:

 • In Monitoring Mode, an application that wants to silent monitor conversation
without being noticed by the calling parties must create a
SilentMonitorManager object and set it mode to eSMMonitoringMode using
the StartSMMonitoringMode method.

 • In Monitored Mode, an application will accept requests to initiate silent
monitor sessions to forward the voice conversations to the remote monitoring
application. The application will create a SilentMonitorManager object and
set the mode to eSMMonitoredMode using the StartSMMonitoredMode
method.

For more information on these modes see the section “Initiating and Ending a
Silent Monitor Session” in Chapter 4, “Building Your Application.”

Note SilentMonitorManager Object methods and properties are not available in the
Java or .NET CILs. SilentMonitorManager Object methods and properties are
supported for use with Cisco IPCC only.
13-1
rprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Properties
Properties
Table 13-1 lists the SilentMonitorManager object properties.

Table 13-1 SilentMonitorManager Object Properties

Keyword Type Description

HeartbeatInterval INT Heartbeat interval for the silent
monitor session.

HeartbeatTimeout INT Timeout for no activity.

IPPhoneInformation ARGUMENTS This property is only accessible via
the GetIPPhoneInfo method. It
contains all the information related
to the IP Phone used by the
application.

MediaTerminationPort INT TCP/IP port where monitored
conversation will be sent for
playback on system sound card.

SessionInformation ARGUMENTS This property is only accessible via
the GetSessionInfo method. It
contains all the information related
to the current active silent monitor
session.

SMManagerMode SHORT Mode in which the manager object
will operate (Table 13-2).
13-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
Methods
Table 13-3 lists the SilentMonitorManager object methods.

Table 13-2 SMManagerMode Values

enum Value Description
Numeric
Value

eSMModeNotSet Mode not set. -1

eSMMonitoredMode The manager accept request for silent
monitor sessions and forward voice to
the monitoring application.

0

eSMMonitoringMode The manager can make requests to
remote client to start a silent monitor
session and send voice.

1

Table 13-3 SilentMonitorManager Object Methods

Method Description

AcceptSilentMonitoring Establishes a silent monitor session and
immediately starts sending audio.

GetIPPhoneInfo Retrieves the information of the IP Phone used
by the client application.

GetSessionInfo Retrieves the information related to the current
silent monitor session.

GetSMSessionList Retrieves a list of all active Silent Monitor
sessions.

IsMonitoredTarget Determines if the device/agent is a target being
monitored.

SetIPPhoneInfo Saves the information of the IP Phone used by
the client application.

StartSilentMonitorRequest Sends a silent monitor session start request to a
targeted client.
13-3
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
Argument Parameter Rules
The following rules apply to the optional_args and reserved_args parameters in
SilentMonitorManager Object methods:

 • In VB, you can ignore these parameters altogether. For example, you can treat
the line:

StartSMMonitoringMode([reserved_args As IArguments]) As Long

as follows:

StartSMMonitoringMode()

• To ignore these parameters in COM you must send a NULL, as shown:

StartSMMonitoringMode(NULL)

AcceptSilentMonitoring
The AcceptSilentMonitoring method establishes the silent monitor session
requested by the OnSilentMonitorRequestedEvent and immediately starts sending
audio to the monitoring client. This method should only be used if the parameter
DoDefaultMessageHandling was set to False when the subscriber handled the
OnSilentMonitorRequestedEvent event.

StartSMMonitoredMode Puts the SilentMonitorManager in Monitored
mode.

StartSMMonitoringMode Puts the SilentMonitorManager in Monitoring
mode.

StopSilentMonitorMode Sets the SilentMonitorManager mode to
eSMModeNotSet. If a silent monitor session is
active at this time, the session is terminated.

StopSilentMonitorRequest Stops the active silent monitor session.

Table 13-3 SilentMonitorManager Object Methods (continued)

Method Description
13-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
Syntax

C++: int AcceptSilentMonitoring(Arguments & args);
COM: HRESULT AcceptSilentMonitoring (/*[in]*/ IArguments * args,
/*[out,retval]*/ int * errorcode);
VB: AcceptSilentMonitoring (ByVal args as CTIOSCLIENTLIB.IArguments)
As Long

Parameters

args

Arguments array that contains the parameters listed in Table 13-4:

Table 13-4 AcceptSilentMonitoring Arguments Array Parameters

Keyword Type Description

MonitoredUniqueObject
ID

STRING Unique Object ID of the object being
monitored.

MonitoringIPAddress STRING TCP/IP address of the monitoring
application.

MonitoringIPPort INT TCP/IP port of the monitoring
application.

SMSessionKey UNSIGNED
SHORT

Unique identifier for the Silent
Monitor Session.

HeartbeatInterval INT Heartbeat interval for the silent
monitor session.

HeartbeatTimeout INT Timeout for no activity.

OriginatingServerID STRING TCP/IP Address:Port of the CTIOS
server from which the request
originated.
13-5
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

GetIPPhoneInfo
The GetIPPhoneInfo method gets the information about the client application IP
Phone.

Syntax

C++: Arguments * GetIPPhoneInfo(void);
COM: HRESULT GetIPPhoneInfo (/*[out,retval]*/ IArguments **
IPPhoneInfo);
VB: GetIPPhoneInfo () as CTIOSCLIENTLIB.IArguments

OriginatingClientID STRING Client Identification of the monitoring
application.

DoDefaultMessage
Handling

BOOLEAN When this parameter is set to True, it
instructs the SilentMonitorManager to
immediately start sending audio and
establish the silent monitor session. If
this value is set to False, it instructs
the SilentMonitorManager to not send
voice and not to establish the silent
monitor session. It is then the
responsibility of the subscriber to
report this status accordingly.

Table 13-4 AcceptSilentMonitoring Arguments Array Parameters (continued)

Keyword Type Description
13-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
Parameters

None.

Return Value

This method returns an arguments array that contain the parameters listed in
Table 13-5.

Table 13-5 GetIPPhoneInfo Return Arguments Array

Keyword Type Description

ClientAddress STRING IP Address of the IP Phone to be used by the
client application.

BitRate INT Audio transmission bit rate

PacketSize INT Number of milliseconds of audio stored in a
packet.

Direction SHORT One of the following values that indicates
the direction of voice flow between the
calling party and the called party:

0: Input

1: Output

2: Bidirectional

RTPTypea SHORT One of the following values that indicates
the type of RTP messages between the
calling party and the called party:

0: audio

1: video

2: data
13-7
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
GetSessionInfo
The GetSessionInfo method retrieves the information related to the current silent
monitor session.

Syntax

C++: Arguments * GetSessionInfo(Arguments & args) ;
COM: HRESULT GetSessionInfo (/*[in]*/ IArguments * args,
/*[out,retval]*/ IArguments * SMSessionInfo);
VB: GetSessionInfo (ByVal args as CTIOSCLIENTLIB.IArguments) As
CTIOSCLIENTLIB.IArguments

Parameters

args

Arguments array that contains one, but not both, of the parameters listed in
Table 13-6:

EchoCancelation SHORT One of the following values that indicates
whether the echo cancellation feature is
enabled on this IP Phone:

0: Off

1: On

PayLoadType SHORT Audio codec type.

Table 13-5 GetIPPhoneInfo Return Arguments Array (continued)

Keyword Type Description
13-8
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
Return Values

This method returns an arguments array containing the key/value pairs listed in
Table 13-7:

Table 13-6 GetSessionInfo Arguments Array Parameters

Keyword Type Description

SMSessionKey UNSIGNED
SHORT

Unique silent monitor session
Object ID of the target object
that is being monitored.

MonitoredUniqueObjectID STRING Unique Object ID of the target
object that is being monitored.

Table 13-7 GetSessionInfo Return Arguments Array Parameters

Keyword Type Description

SMSessionKey UNSIGNED
SHORT

Unique silent monitor session
Object ID of the target object
that is being monitored.

SMSessionStatus SHORT One of the ISilentMonitorEvent
status codes in Table 6-5.

AudioMode INT Reserved. Specifies the audio
mode bitmask.

AgentID/DeviceID STRING Agent ID or DeviceID of the
target being monitored.

MonitoredUniqueObjectID STRING Unique Object ID of the target
object being monitored.

MonitoredDeviceIPAddress STRING TCP/IP Address of the
monitored IP Phone.

PeripheralID INT ID of the peripheral associated
with the agent and IP phone.
13-9
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
GetSMSessionList
The GetSMSessionList method returns an Arguments array that contains the
parameters listed in Table 13-10. All parameters are required.

Syntax

C++: Arguments * CIL_API GetSMSessionList(void)
COM: HRESULT GetSMSessionList([out,retval] IArguments **pIArguments);
VB: GetSMSessionList () as CTIOSCLIENTLIB.IArguments

Parameters

None.

Return Values

Arguments array that contains a list of all Silent Monitor sessions. The current
version only allows one active session, so the main use for this function is to use
the NumElements method on the returned arguments array to determine if the
current SilentMonitorManager is in an active Silent Monitor session.

MonitoringIPAddress STRING TCP/IP Address of the system
receiving audio.

MonitoringIPPort INT TCP/IP port on which receiving
system is listening for audio.

Table 13-7 GetSessionInfo Return Arguments Array Parameters

Keyword Type Description
13-10
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
IsMonitoredTarget
The IsMonitoredTarget method determines if the specified device or agent is a
target that is being monitored.

Syntax

C++: bool IsMonitoredTarget (Arguments & args);
COM: HRESULT IsMonitoredTarget (/*[in]*/ IArguments * args,
/*[out,retval]*/ VARIANT_BOOL * bMonitored);
VB: IsMonitoredTarget () As Boolean

Parameters

args

Arguments array that contains the parameter listed in Table 13-8:

Return Value

True if the specified MonitoredUniqueObjectID corresponds to the monitored
agent or device; False otherwise.

SetIPPhoneInfo
The SetIPPhoneInfo method saves the information of the IP Phone used by the
client application.

Syntax

C++: int SetIPPhoneInfo (Arguments & args);

Table 13-8 IsMonitoredTarget Arguments Array Parameter

Keyword Type Description

MonitoredUniqueObjectID STRING Unique Object ID of the target
object being monitored.
13-11
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
COM: HRESULT SetIPPhoneInfo (/*[in]*/ IArguments * args,
/*[out,retval]*/ int * errorcode);
VB: SetIPPhoneInfo (ByVal args as CTIOSCLIENTLIB.IArguments) As Long

Parameters

args

Arguments array that can contain the parameters listed in Table 13-9:

Table 13-9 SetIPPhoneInfo Arguments Array Parameters

Keyword Type Description

ClientAddress
(required)

STRING IP Address of the IP Phone to be used by the
client application.

BitRate (optional) INT Audio transmission bit rate.

PacketSize
(optional)

INT Number of milliseconds of audio stored in a
packet.

Direction (optional) SHORT One of the following values that indicates
the direction of voice flow between the
calling party and the called party:

0: Input

1: Output

2: Bidirectional

RTPType (optional) SHORT One of the following values that indicates
the type of RTP messages between the
calling party and the called party:

0: audio

1: video

2: data
13-12
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

StartSilentMonitorRequest
The StartSilentMonitorRequest method sends a silent monitor session start
request to a targeted client

Syntax

C++: int StartSilentMonitorRequest (Arguments & args, unsigned short
* SMSessionKey);
COM: HRESULT StartSilentMonitorRequest (/*[in]*/ IArguments * args,
/*/[out]*/ unsigned short * SMSessionKey, /*[out,retval]*/ int *
errorcode);
VB: StartSilentMonitorRequest int (ByVal args as
CTIOSCLIENTLIB.IArguments, ByRef SMSessionKey AsLong) As Long

EchoCancelation
(optional)

SHORT One of the following values that indicates
whether the echo cancellation feature is
enabled on this IP Phone:

0: Off

1: On

PayLoadType
(optional)

SHORT Audio codec type.

Table 13-9 SetIPPhoneInfo Arguments Array Parameters (continued)

Keyword Type Description
13-13
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
Parameters

args

Arguments array that contains the parameters listed in Table 13-10. All
parameters are required.

SMSessionKey

An output parameter that contains the unique key to the started silent monitor
session. This key must be used to perform any action on the currently active
silent monitor session.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Table 13-10 StartSilentMonitorRequest Arguments Array Parameters

Keyword Type Description

AgentID or DeviceID STRING AgentID or DeviceID of the target to
monitor. Specify either an AgentID or a
DeviceID, not both,

PeripheralID INT ID of the peripheral associated with the
agent or device.

MonitoringIPAddress STRING TCP/IP address of the system receiving
audio.

MonitoringIPPort INT TCP/IP port where the monitoring
application is listening for audio.

HeartbeatInterval INT Interval in seconds between heartbeats.

HeartbeatTimeout INT Seconds elapsing before a Silent
Monitor session is aborted because of
no heartbeats received from the
monitored peer.
13-14
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
Remarks

If the DeviceID is used, there must be an agent associated with the device. The
session will timeout if there is no agent logged into the device. An established
silent monitor session will end if the associated agent logs out of the device.

StartSMMonitoredMode
The StartSMMonitoredMode method puts the SilentMonitorManager in
Monitored mode.

Syntax

C++: int StartSMMonitoredMode (Arguments & args);
COM: HRESULT StartSMMonitoredMode (/*[in]*/ IArguments * args,
/*[out,retval]*/ int * errorcode);
VB: StartSMMonitoredMode (ByVal args as CTIOSCLIENTLIB.IArguments) As
Long

Parameters

args

Arguments array that contains the following parameters listed in
Table 13-11:
13-15
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Table 13-11 StartSMMonitoredMode Arguments Array Parameters

Keyword Type Description

Cluster ARRAY An array of IP addresses and/or
hostnames for silent monitor services.
These silent monitor service should all
be members of the same cluster to
ensure that the agent's calls can be
silently monitored. The CIL randomly
chooses one silent monitor service to
which to connect. See the CTI OS
System Manager’s Guide for
ICM/IPCC Enterprise and Hosted
Editions for information pertaining to
silent monitor service cluster
configuration.

SMSAddr STRING If Cluster is not present, this parameter
can be used to specify the address of a
silent monitor service to which to
connect.

SMSListenport INT The port on which the silent monitor
services listen for connections.

SMSTOS INT The QoS setting for the connection.

SMSHeartbeats INT The interval in milliseconds between
heartbeat packets.

SMSRetries INT The number of heartbeats that can be
missed before the connection is
aborted.
13-16
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
StartSMMonitoringMode
The StartSMMonitoringMode method puts the SilentMonitorManager in
Monitoring mode.

Syntax

C++: int StartSMMonitoringMode (Arguments & args);
COM: HRESULT StartSMMonitoringMode (/*[in]*/ IArguments * args,
/*[out,retval]*/ int * errorcode);
VB: StartSMMonitoringMode (ByVal args as CTIOSCLIENTLIB.IArguments)
As Long

Parameters

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Table 13-12 StartSMMonitoringMode Arguments Array Parameters

Keyword Type Description

SMSAddr STRING A string that contains the address of the silent
monitor service used to decode and play back
the agent’s phone call.

SMSListenport INT The port on which the silent monitor services
listen for connections.

SMSTOS INT The QoS setting for the connection.

SMSHeartbeats INT The interval in milliseconds between heartbeat
packets.

SMSRetries INT The number of heartbeats that can be missed
before the connection is aborted.
13-17
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
StopSilentMonitorMode
The StopSilentMonitorMode method sets the SilentMonitorManager mode to
eSMModeNotSet. If a silent monitor session is active at the time, the session will
be terminated.

Syntax

C++: int StopSilentMonitorMode (Arguments & reserved_args);
COM: HRESULT StopSilentMonitorMode (/*[in]*/ IArguments *
reserved_args, /*[out,retval]*/ int * errorcode);
VB: StopSilentMonitorMode (ByVal reserved_args as
CTIOSCLIENTLIB.IArguments) As Long

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

StopSilentMonitorRequest
The StopSilentMonitorRequest method stops the Active silent monitor session.

Syntax

C++: int StopSilentMonitorRequest (Arguments & args);
COM: HRESULT StartSilentMonitorRequest (/*[in]*/ IArguments * args,
/*[out,retval]*/ int * errorcode);
VB: StopSilentMonitorRequest (ByVal args as
CTIOSCLIENTLIB.IArguments) As Long
13-18
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
Parameters

args

Arguments array that contains the parameter listed in Table 13-13:

errorcode

An output parameter (return parameter in VB) that contains an error code
from Table 3-2 in Chapter 3, “CIL Coding Conventions.”

Return Values

Default CTI OS return values. See Chapter 3, “CIL Coding Conventions.”

Table 13-13 StopSilentMonitorRequest Arguments Array Parameters

Keyword Type Description

SMSessionKey UNSIGNED
SHORT

Unique key of the current active silent
monitor session
13-19
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Chapter 13 SilentMonitorManager Object
Methods
13-20
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Ente

A
 P P E N D I X A

CTI OS Keywords and Enumerated
Types

Keywords
The CTIOS Client Interface Library uses the Arguments structure to pass
key-value pairs between the client and the server (see Chapter 12, “Helper
Classes” for a detailed explanation of Arguments). Throughout this document all
event and method parameter lists, as well as object properties, are listed with the
keywords and the types associated with those keywords.

The expected (required and optional) keywords are referred to in this document
by string name. For example, the Agent’s property for agent identifier is referred
to as AgentID.

In addition to being able to use the string name for a keyword, programmers can
take advantage of an enumeration of keywords as well.

Note The enumeration of keywords is presently only available in the C++ CIL.

For each string keyword, a corresponding enumerated keyword exists. The
enumerated keyword is the same name, preceded by the prefix ‘ekw’. For
example, the AgentID string keyword is mapped to the enumerated keyword
ekwAgentID.
A-1
rprise & Hosted Editions Release 7.1(1)

Appendix A CTI OS Keywords and Enumerated Types
Enumerated Types
Usage Example in C++:

Arguments& args = Arguments::CreateInstance();
args.AddItem(ekwAgentID, “22866”);
args.AddItem(ekwAgentInstrument, “23901”);

pAgent->Login(args);

args.Release();

The complete set of standard keywords used in CTIOS can be found in the C++
header file “ctioskeywords.h”, located in the \Distribution\cpp\Include directory
on the CTI OS toolkit media.

Java CIL Keywords
For Java CIL, the CtiOs_IKeywordIDs interface contains a list of known Java CIL
CTI OS keywords. See the Java CIL Javadoc file for more information.

.NET CIL Keywords
The Cisco.CtiOs.Util.Keywords.Enum_CtiOs enum contains the list of CTI OS
keyword IDs.

Enumerated Types
CTI OS employs enumerated types to provide symbolic names for commonly
recurring values.

 • In C++, Visual Basic, and COM, these are presented as enumerated types.

 • In Java, special interfaces are used to simulate enumerated types. See the next
section, “Java Interfaces”.

The complete set of enumerated types and their values can be found in the
following locations:
A-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix A CTI OS Keywords and Enumerated Types
Enumerated Types
 • For C++ CIL using static libraries: the complete set of enumerated types is
located in the C++ header file “cilmessages.h”, located in the C:\Program
Files\Cisco Systems\CTIOS Client\CTIOS Toolkit\Win32 CIL\Include directory
on the CTIOS toolkit media.

 • For COM (Visual Basic and Visual C++): the complete set of enumerated
types is located in the CTIOSClient Type Library, which is compiled into the
“CTIOSClient.dll” file, located in the C:\Program Files\Cisco Systems\CTIOS
Client\CTIOS Toolkit\Win32 CIL\COM Servers and Activex Controls directory
on the CTIOS toolkit media.

In the Java CIL, the CTIOS_Enums interface contains the Java CIL enumerated
types. See the Java CIL Javadoc file for more information.

In the .NET CIL, the CtiOs_Enums class contains the .NET CIL enumerated
types.

 • For Java: To be supplied with Java package release.
A-3
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix A CTI OS Keywords and Enumerated Types
Enumerated Types
Java Interfaces
The Java CIL handles the C++ CIL enums is through the use of interfaces. The
custom application can then either implement those interfaces and use the static
data members without referencing them with the interface name first, or it can
access those members through referencing. By convention, the name of the Java
interface is the same as the enum tag but with the “enumCTIOS_” prefix
substituted with “CtiOs_I”. So for example, the following C++ CIL enum

enum enumCTIOS_AgentState
{

eLogin = 0,
eLogout = 1,
eNotReady = 2,
eAvailable = 3,
eTalking = 4,
eWorkNotReady = 5,
eWorkReady = 6,
eBusyOther = 7,
eReserved = 8,
eUnknown = 9,
eHold=10

 };

is implemented in the Java CIL as follows:

public interface CtiOs_IAgentState
{

public static final inteLogin = 0,
eLogout = 1,
eNotReady = 2,
eAvailable = 3,
eTalking = 4,
eWorkNotReady = 5,
eWorkReady = 6,
eBusyOther = 7,
eReserved = 8,
eUnknown = 9,
eHold=10;

}

A Java CIL application can access those defined values in one of two ways; either
by implementing the interface, as shown:
A-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix A CTI OS Keywords and Enumerated Types
Enumerated Types
public class MyAgent extends CtiOsObject implements CtiOs_IAgentState
{

 ...

 public int MyLogin(Arguments rArguments)
 {

..................................
 //Access eLogin directly
rArguments.AddItemInt("agentstate", eLogin);

..................................

 }
}

or by referencing as follows:

public class MyAgent extends CtiOsObject
{

 ...
 public int MyLogin(Arguments rArguments)
 {

..................................
rArguments.AddItemInt("agentstate", CtiOs_IAgentState.eLogin);

..................................

 }
}

A-5
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix A CTI OS Keywords and Enumerated Types
Enumerated Types
A-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Ente

A
 P P E N D I X B

CTI OS Logging

This appendix discusses a few issues related to CTI OS logging.

Creating CTI OS Client Logs (COM and C++)
If you install the tracing mechanism, the COM and C++ CILs automatically create
a log file and trace to it. The trace log file name and location for client processes
can be found under the following Windows registry key:

HKEY_LOCAL_MACHINE\Software\Cisco Systems, Inc.\CTI
Desktop\CTIOS\Logging\TraceFileName

The default filename is CtiosClientLog. Log files are created using the convention
<TraceFileName>.<Windows user name>.mmdd.hhmmss.log. The files are
created in the current directory of the executing program, such as the directory
into which the AgentDesktop is installed. You can provide a fully qualified path
for the TraceFileName if you wish to store the files in a different location. For
example, setting the following value causes the log files to be stored in the
directory C:\Temp, using the naming convention CtiosClientLog.<Windows
user name>.mmdd.hhmmss.log.

C:\Temp\CtiosClientLog

Client trace files are formatted in ASCII text that you can open with a
conventional text editor such as Notepad.
B-1
rprise & Hosted Editions Release 7.1(1)

Appendix B CTI OS Logging
Setting Trace Levels (COM and C++)
How to Install the Tracing Mechanism (COM and C++)
To install the tracing mechanism:

Step 1 Copy the tracing executable, ctiostracetext.exe, from the distribution media to the
folder in which your application is located.

Step 2 Open a command window and register the tracing mechanism:

ctiostracetext.exe /regserver

Setting Trace Levels (COM and C++)
You must set the tracel level in the registry by creating a TraceMask registry value
within the HKEY_LOCAL_MACHINE\Software\Cisco Systems\Ctios\Logging
key and setting its value to 0x40000307.

Trace levels for client processes, such as the Agent Desktop phone are stored
under the following registry key:

HKEY_LOCAL_MACHINE\Software\Cisco Systems\CTI Desktop\Ctios\Logging

Warning If the TraceMask not set or if it is set incorrectly, the application's performance
may be negatively affected. The preferred setting for normal operation is
0x40000307.

Configuring Tracing (COM and C++)
You can set C++ and COM client trace configuration parameters in the Windows
registry at the following key. See Java CIL Logging Utilities, page B-3, for
instructions on configuring tracing for the Java CIL. See Logging and Tracing
(.NET), page B-7, for instructions on configuring tracing for the .NET CIL.

HKEY_LOCAL_MACHINE\SOFTWARE\Cisco Systems\CTI Desktop\Ctios\Logging
B-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix B CTI OS Logging
Java CIL Logging Utilities
These settings are defined as follows:

Java CIL Logging Utilities
The Java CIL provides a different logging facility than the C++ CIL. This gives
the customer application more flexibility in how trace messages are handled. It
also limits the number of special privileges the browser would need to give the
applet using the CIL; the Java CIL will only need to access the network and not
the file system. For that reason, the Java CIL does its tracing through the firing of
special events called “LogEvents” that the custom application can trap and handle
in however way it sees fit.

Parameter Description Recommended Value

FlushIntervalSeconds Maximum number of
seconds before the trace
mechanism transfers data
to the log file.

30

MaxDaysBeforeExpire Maximum number of days
before a log file is rolled
over into a new log file
regardless of the size of the
file.

7

MaxFiles Maximum number of log
files that may exist in the
log file directory before
the logging mechanism
starts overwriting old files.

5

MaxFileSizeKb Maximum size of a log file
in kilobytes. When a log
file reaches the maximum
size, a new log file is
created.

2048

TraceMask Bit mask that determines
the categories of events
that are traced.

0x40000307
B-3
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix B CTI OS Logging
Java CIL Logging Utilities
The Java CIL provides the following objects for logging as part of the utilities
package:

ILogEvents
This interface must be implemented by a class interested in receiving Java CIL
LogEvents. It only has one method.

void processLogEvent(LogEvent event)

LogEvent
A custom application that is interested in receiving LogEvents will receive an
object of this type whenever a log message is generated. This class extends the
Java “EventObject”, and has one public method:

String getDescription()

Logger
A custom application that is interested in firing or handling its own LogEvents,
can create an instance of this class.

Method Description

getDescription Returns the text description to write somewhere.

Method Description

Logger Public constructor of the Logger object.

Trace Lets the custom app fire a LogEvent

GetTraceMask Gets the trace mask.

IsTraceMaskEnabled Determines if a certain trace mask is set.
B-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix B CTI OS Logging
Java CIL Logging Utilities
Syntax

Logger()
int Trace(long nMsgTraceMask, String message)
long GetTraceMask()
boolean IsTraceMaskEnabled(long nMsgTraceMask)
void addLogListener(ILogEvents logEvents

where logEvents implements the ILogEvents interface.

void removeLogListener(ILogEvents logEvents)

where logEvents implements the ILogEvents interface.

LogEventsAdapter
This is a wrapper class around the Logger facility. A custom application that is
interested in tracing but doesn’t want to implement its own ILogEvents interface
can create an instance of this class. The adapter class provides two constructors,
a default one that will automatically log to the Java console and one that takes in
an output filename.

addLogListener Subscribe to receive LogEvents.

removeLogListener Unsubscribe from receiving LogEvents.

Method Description

LogEventsAdapter Public constructor

startLogging Start receiving LogEvents

stopLogging Stop receiving LogEvents

processLogEvent Handles a LogEvent

finalize Does some cleanup
B-5
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix B CTI OS Logging
Logging and Tracing (Java)
Syntax

LogEventsAdapter()
LogEventsAdapter(String fileName)
void startLogging()
void stopLogging()
void processLogEvent(LogEvent e)
void finalize()

 Logging and Tracing (Java)
The Java CIL tracing mechanism behaves differently from that of the COM and
C++ CILs. The Java CIL does not automatically create a log file and trace to it.
You must develop the custom application to create and maintain the log file.

The Java CIL provides classes that allow you to write tracing messages from CTI
applications. You can create a class that implements ILogListener, register it with
the LogManager , and write the trace events to a log file.

The Java CIL also includes the LogWrapper class, which implements the
ILogListener interface and provides a default logging mechanism.

The LogWrapper class has three constructors:

 • LogWrapper() - Creates a new LogWrapper object that writes tracing messages
to System.out.

 • LogWrapper(string sFileName) - Creates a new LogWrapper object that writes
trace messages to the file specified in sFileName.

 • LogWrapper(string sFileName, long iMaxSize, int iArchives, int iExpires, int
iFlushIntervalMs) - Creates a new LogWrapper object that traces to the file
specified in sFileName and sets all the tracing properties provided:

 – The maximum size of a single trace file (the default is 2048 Kb)

 – The maximum number of trace files before LoggerManager deletes the
oldest file (the default is 4).

If a developer deploys an application and then wants to debug it in the field, they
need a way to change the trace mask from the default level if necessary to provide
more information for debugging.
B-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix B CTI OS Logging
Logging and Tracing (.NET)
Note You will also need to provide a way to adjust the trace mask at runtime. If you
encounter problems, Cisco personnel will need to see this log file in order to assist
you with your problem.

See the Java CIL Javadoc file for information on the LogWrapper class and its
associated methods.

Logging and Tracing (.NET)
The .NET CIL tracing mechanism behaves differently from that of the COM and
C++ CILs. The .NET CIL does not automatically create a log file and trace to it.
You must develop the custom application to create and maintain the log file.

The .NET CIL provides classes that allow you to write tracing messages from CTI
applications. Custom applications can either create their own logging mechanism
or use the default logging mechanism provided in the .NET CIL.

Using the Default Logging Mechanism
You can use the .NET CIL LogWrapper class to implement logging to the system
console or to a file. The LogWrapper class registers itself as an event listener and
creates a log file.

How to Log Trace Events Using the LogWrapper Class

To log trace events using the LogWrapper class:

Step 1 Create an instance of the LogWrapper class, passing the following arguments:

 • logFileName - Name of file in which to write trace events

 • fileMaxSize - The maximum size of the log file

 • numberArchivesFiles - Maximum number of log files that may exist in the
log file directory before the logging mechanism starts overwriting old files
B-7
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix B CTI OS Logging
Logging and Tracing (.NET)
 • numberDaysBeforeFileExpired - Maximum number of days before a log file
is rolled over into a new log file regardless of the size of the file.

The following code snippet creates an instance of the LogWrapper class that
writes trace events to MyLogFile.txt. When MyLogFile.txt reaches 2048 KB, a
new log file is created. The Logger creates a maximum of 20 log files in the log
file directory before overwriting existing files . After 10 days, the log file is rolled
over into a new log file regardless of its size.

// Create a LogWrapper. This will create a file and start
// listening for log events to write to the file.
String logFileName = "MyLogFile.txt";
int fileMaxSize = 2048;
int numberArchivesFiles = 20;
int numberDaysBeforeFileExpired = 10;
m_logWrapper = new LogWrapper(logFileName, fileMaxSize,
numberArchivesFiles, numberDaysBeforeFileExpired);

Step 2 In your application, write trace events. The following example traces a message
at the given trace level for the given method. Set the trace level to the desired trace
mask. Trace masks are defined in the Logger class. See Table B-1 for a list of
available trace mask values.

protected internal static void MyTrace (
int traceLevel,
string methodName,
string msg)
{

if (m_logger.IsTraceMaskEnabled(traceLevel))
{

string tracsMsg = string.Format("{0}: {1}", methodName,
msg) ;

m_logger.Trace(traceLevel, msg) ;
}

}

The CTI Toolkit Combo Desktop .NET sample application included with the CTI
OS toolkit shows how to use the CIL's LogWrapper class in the context of a
complex softphone application.
B-8
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix B CTI OS Logging
Logging and Tracing (.NET)
Table B-1 lists the trace masks available in the .NET CIL.

Table B-1 Trace Masks in .NET CIL

TRACE_MASK_ARGS_LOGIC Logic trace for Args and
Arguments objects.

TRACE_LEVEL_EVENT_REQ Mask for logic and parameters
for general events and requests.

TRACE_LEVEL_MAJOR Mask for major events.

TRACE_LEVEL_MEMORY Mask for very low level
operations.

TRACE_LEVEL_METHOD Mask for method entry and exit.

TRACE_MASK_ALWAYS Always print

TRACE_MASK_ARGREFCOUNTING Addref/release, refcount for
Arg and Arguments objects.

TRACE_MASK_ARGS_METHODS Method entry/exit for
Arguments objects

TRACE_MASK_CONNECTION Connection tracing on or off

TRACE_MASK_CRITICAL Critical error

TRACE_MASK_EVENTFILTER All logic from the EventFilter

TRACE_MASK_EVT_REQ_AVG Evants and requests of average
importance.

TRACE_MASK_EVT_REQ_AVG_PARM Logic and parameters for events
and requests of average
importance.

TRACE_MASK_EVT_REQ_HIGH Highly important events and
requests.

TRACE_MASK_EVT_REQ_HIGH_PARM Logic and parameters for highly
important events and requests

TRACE_MASK_EVT_REQ_LOW Events and requests of low
importance.

TRACE_MASK_EVT_REQ_LOW_PARM Logic and parameters for events
and requests of low importance.

TRACE_MASK_MESSAGEPASSING Messages entering and leaving
the CTI OS client or server.
B-9
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix B CTI OS Logging
Logging and Tracing (.NET)
Creating a Custom Logging Mechanism
The LogManager class within the .NET CIL implements all CIL logging
functions. This singleton class has only one instance of LogManager, which
provides a global point of access. The LogManager object defines a
LogEventHandler delegate that must be implemented by custom applications:

public delegate void LogEventHandler(object eventSender, LogEventArgs
args);

TRACE_MASK_METHOD_AVG Internal visibility method
entry/exit trace

TRACE_MASK_METHOD_AVG_LOGIC Internal visibility method logic
trace

TRACE_MASK_METHOD_HIGH High visibility method
entry/exit trace

TRACE_MASK_METHOD_HIGH_LOGIC High visibility method logic
trace

TRACE_MASK_METHOD_LOW Helper object visibility method
entry/exit trace

TRACE_MASK_METHOD_LOW_LOGIC Helper object visibility method
logic trace

TRACE_MASK_METHOD_MAP Map access

TRACE_MASK_PACKETS_LOGIC Logic trace for packets objects

TRACE_MASK_PACKETS_METHODS Method entry/exit for packets
objects

TRACE_MASK_REFCOUNTING Addref/release, refcount

TRACE_MASK_SERIALIZE_DUMP Memory dump of serialize
buffer

TRACE_MASK_SOCKETS_DUMP Memory dump of sockets buffer

TRACE_MASK_THREADING Threading tracing on or off

TRACE_MASK_WARNING Warning

Table B-1 Trace Masks in .NET CIL
B-10
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix B CTI OS Logging
Logging and Tracing (.NET)
How to Log Trace Events Using the Logger Class

To log trace events from a custom application to a file, perform the following
steps:

Step 1 Create a Logger object. For example:

m_log = new Logger();

Step 2 Write a method to handle log events. This method can trace the log events to a
file, if desired. For example:

public virtual void ProcessLogEvent(Object eventSender, LogEventArgs
Evt)
{

// Output the trace
String traceLine = Evt.Description;
// Check that tracing is enabled for this tracelevel
if (m_logger.IsTraceMaskEnabled(traceLevel))

{
WriteTraceLineToFile(traceLine);

}
}

Step 3 Create a log listener to handle trace events. In the following example, the
AddLogListener method registers the LogEventHandler delegate as a listener for
trace events. The LogManager will send trace events to the method that you pass
to the LogEventHandler.

In the following example, the LogManager will send trace events to the
ProcessLogEvent method created in Step 2.

m_log.AddLogListener(new LogManager.LogEventHandler(ProcessLogEvent));

Note The LogManager only calls the method passed as a parameter to the
LogEventHandler for a particular trace if the trace level for that trace is enabled.
You can use the IsTraceMaskEnabled method in the Logger class to determine
whether or not a trace level is enabled.
B-11
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix B CTI OS Logging
Logging and Tracing (.NET)
Configuring Tracing (Java and .NET)
For the Java and .NET CILs, you can configure tracing either programmatically
by using the LogWrapper class or by editing the TraceConfig.cfg file. Settings in
TraceConfig.cfg will not take effect until LogWrapper.ProcessConfigFile is
called. Your application must call ProcessConfigFile if you have edited the
configuration settings in the TraceConfig.cfg file.

The All Agents Sample .NET code in the .NET CIL includes a sample
TraceConfig.cfg file and shows how to process that file.

Log file configuration settings are defined as follows:

Parameter Description
Recommended
Value

NumberDaysBeforeFileExpired Maximum number of
days before a log file is
rolled over into a new
log file regardless of the
size of the file.

1

NumberArchivesFiles Maximum number of
log files that may exist
in the log file directory
before the logging
mechanism starts
overwriting old files.

5

FileMaxSize Maximum size of a log
file in kilobytes. When a
log file reaches the
maximum size, a new
log file is created.

2048

TraceMask Bit mask that
determines the
categories of events that
are traced.

0x40000307
B-12
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Ente

A
 P P E N D I X C

Migrating From CTI OS 6.0

Introduction
Cisco CTI OS Toolkit Release 7.1(1) is the official release in which Microsoft
Visual Studio .NET is supported and with which it is possible to build Win32
and.NET applications.

In Cisco CTI OS Toolkit 7.1(1), the C++ CIL static libraries are targeted to be
used ONLY with Microsoft’s C\C++ 7.1(1) compiler or equivalent. Therefore,
these libraries will not work if used with an earlier version of Microsoft Visual
Studio (e.g. Visual Studio 6.0). COM CIL 7.1(1) and the CTI OS ActiveX 7.1(1)
controls are targeted for use in development environments that support OLE
Automation, ActiveX and COM, for example Microsoft Visual Basic 6.0.

For existing applications built with earlier versions of the Cisco CTI OS Toolkit
it is necessary to upgrade their build projects to include new parameters required
by the new compilers and the new features in the release. The following sections
describe the migration steps and the new parameters required to build the
application.

The goal of the migration procedures described below is to guide the developer
on porting his/her current application projects to the equivalent project model
under Visual Studio .NET and not a guide on how to port an unmanagedWin32 or
COM application to native .NET.
C-1
rprise & Hosted Editions Release 7.1(1)

Appendix C Migrating From CTI OS 6.0
Migrating a C++ CIL application
Migrating a C++ CIL application
For a client application to be upgraded to use C++ CIL 7.1(1) the following tasks
need to be executed in order for the application to build with the new version.

Step 1 Port Build Project

Using your development environment utilities port your current application build
project to the new platform compatible with Microsoft C\C++ 7.1(1) and made all
the adjustments required by the vendor. For example, to port your Microsoft
Visual C++ 6.0 *.dsp project file to the new Microsoft Visual C++ 7.1(1) *.vcproj
format, open the *.dsp project selecting Open\ Project from the File command
menu in Microsoft Visual Studio .NET. For details refer to Microsoft’s Visual
Studio.NET help on Visual C++ Porting and Upgrading
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/_
vc_porting_home.asp)

Step 2 Set New Compilation Parameters

a. Remove all the references to stlport. With C++ CIL 7.1(1) the use of the
stlport templates library has been discontinued in favor of the standard
implementation now included in Visual C++ 7.1(1) and all the major C\C++
compiler distributions.

b. Add _USE_NUMERIC_KEYWORDS=0 to the preprocessor definitions
setting for the C\C++ compiler settings. CTIOS 7.1(1) has been improved to
use a more efficient format for transmitting arguments arrays to and from
CTIOS Server. This definition is required by CIL C++ for its appropriate
performance. If not specified the application will behave in an unexpected
manner that can lead to a sudden halt or assertion.

c. Add _WIN32_WINNT=0x0500 to the preprocessor definitions setting for the
C\C++ compiler settings. C++ CIL was build targeting the Win32 platform
so your application must be compiled for this platform only.

d. Disable 64-bit portability check options to avoid issues with pointers during
compilation. Microsoft Visual Studio.NET by default targets the Windows
XP platform that is enhanced to support 64-bit enabled applications. All the
libraries and code provided with Cisco CTIOS Toolkit 7.1(1) is targeted for
to the Win32 platform.

e. Enable Buffer Security Check in the project Code Generation Settings
C-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix C Migrating From CTI OS 6.0
Migrating a COM CIL Application
Step 3 Set new Linker Parameters

In C++ CIL 7.1(1) a new set of static libraries where added in order to supports
secure connections from the client to CTIOS Server. The new libraries are:

 • Debug Mode
libeay32d.lib, ssleay32d.lib, Securityd.lib

 • Release Mode
libeay32r.lib, ssleay32r.lib, SecuritySpd.lib

a. In the Debug configuration specify the following static link libraries

 – CTIOS C++ CIL Libraries
libeay32d.lib, ssleay32d.lib, Securityd.lib, UtilLibd.lib,
Argumentslibd.lib, Connectionlibd.lib, Servicelibd.lib, Sessionlibd.lib,
SilentMonitorLibd.lib,

 – Win32 System Libraries
ws2_32.lib, Winmm.lib

b. In the Release configuration specify the following static link libraries:

Note The names of libraries in release mode changed in C++ CIL 7.1(1) and
now they include the suffix “spd” to indicate the libraries were optimized
for speed.

 – CTIOS C++ CIL Libraries
libeay32r.lib, ssleay32r.lib, SecuritySpd.lib, ConnectionLibSpd.lib,
UtilLibSpd.lib, ArgumentsLibSpd.lib, ServiceLibSpd.lib, Sessionlib.lib,
SilentMonitorLib.lib

 – Win32 System Libraries
ws2_32.lib,Winmm.lib

Migrating a COM CIL Application

Migrating a C++ Application that uses COM CIL
A C++ application that uses COM CIL is considered an unmanaged C++
application under Visual Studio .NET.
C-3
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix C Migrating From CTI OS 6.0
Migrating a COM CIL Application
Step 1 Port Build Project

Using your development environment utilities port your current application build
project to the new platform compatible with Microsoft C\C++ 7.1(1) and made all
the adjustments required by the vendor. For example, to port your Microsoft
Visual C++ 6.0 *.dsp project file to the new Microsoft Visual C++ 7.1(1) *.vcproj
format, open the *.dsp project selecting Open\ Project from the File command
menu in Microsoft Visual Studio .NET. For details refer to Microsoft’s Visual
Studio.NET help on Visual C++ Porting and Upgrading
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/_
vc_porting_home.asp)

Step 2 Set New Compilation Parameters

a. Add _WIN32_WINNT=0x0500 to the preprocessor definitions setting for the
C\C++ compiler settings. C++ CIL was build targeting the Win32 platform
so your application must be compiled for this platform only.

b. Disable 64-bit portability check options to avoid issues with pointers during
compilation. Microsoft Visual Studio.NET by default targets the Windows
XP platform that is enhanced to support 64-bit enabled applications. All the
libraries and code provided with Cisco CTIOS Toolkit 7.1(1) is targeted for
to the Win32 platform.

c. Enable Buffer Security Check in the project Code Generation Settings

Migrating a Visual Basic 6.0 to use COM CIL
For applications written with Visual Basic 6.0 that use the COM CIL there are two
migration options available from which the developer needs to choose:

Warning Make sure that the Cisco CTI OS 7.1(1) Toolkit is installed in your development
environment before you initiate any migration task.

 • Migrate to Visual Basic .NET and use .NET CIL

 • Migrate to Visual Basic .NET and use .COM CIL
C-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix C Migrating From CTI OS 6.0
Migrating a COM CIL Application
Migrate to Visual Basic .NET and use .NET CIL

Since Visual Basic .NET applications by default target the .NET Framework, port
the entire application to use native .NET components. For this task the developer
will use the .NET CIL as replacement of COM CIL.

Step 1 Port Build Project

Using your development environment utilities port your current application build
project to the new platform compatible with Visual Basic .NET and made all the
adjustments required by migration tool. For example, to port the Microsoft Visual
Basic 6.0 *.vbp project to the new Microsoft Visual Basic .NET.vbproj format,
open the *.vbp project selecting Open\ Project from the File command menu in
Microsoft Visual Studio .NET. For details refer to Microsoft’s Visual Studio.NET
help on Visual Basic Concepts
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vb
oriUpgradingFromVisualBasic60.asp)

Step 2 Use .NET CIL to Replace COM CIL

 After the project migration tool finishes a report will be presented containing the
tasks to be performed in order to make the application build under Visual Basic
.NET.

In the new project, replace all the references to COM and will add new references
for .NET CIL

For detailed guidance on how to use the .NET CIL the developer must refer to the
CTI Toolkit Combo Desktop .NET sample.

Migrate to Visual Basic .NET and use .COM CIL
For applications that the require to use COM CIL in a Visual Basic .NET
application, it was provided a set of Primary Interop Assemblies (PIAs) to allow
the VB.NET code call interact with COM CIL objects and events. The interop
assemblies for COM CIL are installed in the Global Assembly Cash (GAC) by the
Cisco CTI OS 7.1(1) setup program.

Step 1 Port Build Project
C-5
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix C Migrating From CTI OS 6.0
Migrating a COM CIL Application
Using your development environment utilities port your current application build
project to the new platform compatible with Visual Basic .NET and made all the
adjustments required by migration tool. For example, to port the Microsoft Visual
Basic 6.0 *.vbp project to the new Microsoft Visual Basic .NET.vbproj format,
open the *.vbp project selecting Open\ Project from the File command menu in
Microsoft Visual Studio .NET. For details refer to Microsoft’s Visual Studio.NET
help on Visual Basic Concepts
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vb
oriUpgradingFromVisualBasic60.asp)

Step 2 Verify references to COM CIL Primary Interop Assemblies

After the migration toll finishes the new ported project must include references to
the COM CIL interop assemblies provided in the CTIOS 7.1(1) Toolkit. Verify
that the following assemblies are listed under the project references:
Cisco.CTIOSCLIENTLib.dll and Cisco.CTIOSARGUMENTSLib.dll.

If these assemblies are not in your reference list remove those included by the
migration tool and set the two assemblies described before

Step 3 Apply Ported Code Changes for Visual Basic .NET

Following the migration report apply all the suggested changes such that you code
complies with the new Visual Basic.NET programming language. Be aware that
there are syntactic and semantic differences between Visual Basic 6.0 and .NET
that your application may have to change to accommodate the new model.

Step 4 Porting Event Handlers to Visual Basic .NET

Visual Basic .NET now adheres to the event model defined by the .NET
Framework that is based on delegates. The delegates model in .NET changes the
arguments of the events received by a client application such that all the event
handlers that your application had implemented for COM CIL events will require
to adhere to the new model.

The migration tool does some work at migrating the event handlers but not always
is accurate for this reason the developer is advised to add new event handlers
using the Visual Basic.NET IDE and move the code in the ported handlers to the
new added handlers.
C-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix C Migrating From CTI OS 6.0
Migrating a Visual Basic 6.0 to Use COM CIL
Migrating a Visual Basic 6.0 to Use COM CIL
For applications written with Visual Basic 6.0 that use the COM CIL there are two
migration options available from which the developer needs to choose:

Warning Make sure that the Cisco CTI OS 7.1(1) Toolkit to be installed in your
development environment before you initiate any migration task.

 • Migrate to Visual Basic .NET and use .NET CIL

 • Migrate to visual Basic .NET and use CTIOS Active X Controls

Migrate to Visual Basic .NET and use .NET CIL
Since Visual Basic .NET applications by default target the .NET Framework, port
the entire application to use native .NET components. For this task the developer
will use the .NET CIL as replacement of COM CIL.

Step 1 Port Build Project

Using your development environment utilities port your current application build
project to the new platform compatible with Visual Basic .NET and made all the
adjustments required by migration tool. For example, to port the Microsoft Visual
Basic 6.0 *.vbp project to the new Microsoft Visual Basic .NET.vbproj format,
open the *.vbp project selecting Open\ Project from the File command menu in
Microsoft Visual Studio .NET. For details refer to Microsoft’s Visual Studio.NET
help on Visual Basic Concepts
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vb
oriUpgradingFromVisualBasic60.asp)

Step 2 Use .NET CIL to Replace COM CIL

 After the project migration tool finishes a report will be presented containing the
tasks to be performed in order to make the application build under Visual Basic
.NET.

In the new project, replace all the references to COM and will add new references
for .NET CIL
C-7
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix C Migrating From CTI OS 6.0
Migrating a Visual Basic 6.0 to Use COM CIL
For detailed guidance on how to use the .NET CIL the developer must refer to the
CTI Toolkit Combo Desktop .NET sample.

Migrate to Visual Basic .NET and use CTIOS ActiveX Controls
For applications that use the CTI OS ActiveX Controls it was provided a set of
Runtime Callable Wrapper Assemblies (RCWs) that will allow the NET Windows
Forms and Visual Basic .NET to interact with the CTIOS ActiveX controls. The
RCW assemblies are installed in the Global Assembly Cash (GAC) by the Cisco
CTI OS 7.1(1) setup program.

Step 1 Port Build Project

Using your development environment utilities port your current application build
project to the new platform compatible with Visual Basic .NET and made all the
adjustments required by migration tool. For example, to port the Microsoft Visual
Basic 6.0 *.vbp project to the new Microsoft Visual Basic .NET.vbproj format,
open the *.vbp project selecting Open\ Project from the File command menu in
Microsoft Visual Studio .NET. For details refer to Microsoft’s Visual Studio.NET
help on Visual Basic Concepts
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vb
oriUpgradingFromVisualBasic60.asp)

Step 2 Verify references to the CTIOS ActiveX Controls RCW Assemblies

After the migration toll finishes the new ported project must include references to
the CTIOS ActiveX controls RCW assemblies provided in the CTIOS 7.1(1)
Toolkit. Verify that the assemblies for the controls used in your application are
listed under the project references. For each control in references there must be
two entries for each control one prefixed with AxInterop.ControlName and
Interop. ControlName. The RCW starting with AxIntero.p is responsible for
hosting the ActiveX control on the .NET Windows Form and the RCW prefixed
with Interop. Allows the Visual Basic .NET code to use the properties and
methods exported by the control.

Step 3 Apply Ported Code Changes for Visual Basic .NET

Following the migration report applies all the suggested changes such that you
code complies with the new Visual Basic.NET programming language. Be aware
that there are syntactic and semantic differences between Visual Basic 6.0 and
.NET that your application may have to change to accommodate the new model.
C-8
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix C Migrating From CTI OS 6.0
Migrating a Visual Basic 6.0 to Use COM CIL
Step 4 Porting Event Handlers to Visual Basic .NET

Visual Basic .NET now adheres to the event model defined by the .NET
Framework that is based on delegates. The delegates’ model in .NET changes the
arguments of the events received by a client application such that all the event
handlers that your application had implemented events for any of the CTIOS
ActiveX controls will require adhering to the new model.

The migration tool does some work at migrating the event handlers but not always
is accurate for this reason the developer is advised to add new event handlers
using the Visual Basic.NET IDE and move the code in the ported handlers to the
new added handlers.
C-9
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

Appendix C Migrating From CTI OS 6.0
Migrating a Visual Basic 6.0 to Use COM CIL
C-10
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterprise & Hosted Editions Release 7.1(1)

CTI OS Developer’s Guide for Cisco ICM/IPCC Enterp

I N D E X
A

AcceptSilentMonitoring
SilentMonitorManager object
method 13-4

Accessing properties and parameters 3-12

ActiveX Softphone Controls 5-1

AddItem

Arguments class method 12-15

Agent mode 2-6

agent object methods 9-13

GetAgentState 9-19

GetMonitoredAgent 9-20

GetMonitoredCall 9-21

GetSkillGroups 9-22

IsAgent 9-25

Login 9-26

Logout 9-29

MakeCall 9-31

QueryAgentState 9-38

ReportBadCallLine 9-39

RequestAgentTeamList 9-40

RequestSupervisorAssist 9-41

SendChatMessage 9-42

SetAgentState 9-44

StartMonitoringAgent 9-46
StartMonitoringAgentTeam 9-47

StartMonitoringAllAgentTeams 9-48

StartMonitoringCall 9-49

StopMonitoringAgent 9-50

StopMonitoringAgentTeam 9-51

StopMonitoringAllAgentTeam 9-52

SuperviseCall 9-53

AgentSelectCtl softphone control 5-9

agent state

CTI application control 1-2

AgentStateCtl softphone control 5-5

AgentStatisticsCtl softphone control 5-10

Alternate call object method 10-10

AlternateCtl softphone control 5-10

Answer call object method 10-11

AnswerCtl softphone control 5-10

Architecture 2-1

Arg class 12-2

Arg class methods

Clone 12-4

CreateInstance 12-5

DumpArg 12-6

GetType 12-7

GetValueType 12-8

SetValue 12-11
IN-1
rise & Hosted Editions Release 7.1(1)

Index
Arguments class methods

AddItem 12-15

Clear 12-17

Clone 12-18

DumpArgs 12-20

GetElement 12-21

GetValue 12-23

IsValid 12-26

NumElements 12-27

RemoveItem 12-28

SetElement 12-29

SetValue 12-30

Arguments structure 3-11

asynchronous events 1-3

B

BadLineCtl softphone control 5-11

Button controls 5-4

ButtonCtl softphone control 5-11

Button enablement masks 3-16

C

CallAppearanceCtl softphone control 5-11

call object methods 10-8

Alternate 10-10

Answer 10-11

Clear 10-13
IN-2
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterp
ClearConnection 10-14

Conference 10-15

GetCallContext 10-17

GetCallData 10-19

Hold 10-20

MakeConsultCall 10-21

Reconnect 10-27

Retrieve 10-29

SendDTMFSignal 10-30

SetCallData 10-32

SingleStepConference 10-33

SingleStepTransfer 10-36

Snapshot 10-37

StartRecord 10-38

StopRecord 10-39

Transfer 10-40

CCtiosException class 12-36

ChatCtl softphone control 5-13

CIL error codes 3-4

CIL object model 2-4

CILRefArg class methods

GetType 12-33

GetValue 12-35

SetValue 12-35

Clear

Arguments class method 12-17

Clear call object method 10-13

ClearConnection call object method 10-14

Client Interface Library (CIL) 2-2
rise & Hosted Editions Release 7.1(1)

Index
Clone

Arg class method 12-4

Arguments class method 12-18

Coding conventions 3-1

COM CIL

using 4-15

COM CIL (C++) 4-18

Conference call object method 10-15

ConferenceCtl softphone control 5-13

Connect session object method 8-8

CreateInstance

Arg class method 12-5

Arguments class method 12-19

CreateSilentMonitorManager session object
method 8-11

CreateWaitObject session object method 8-12

CTI-enabled applications 1-2

CTI OS

advantages 1-6

application architecture 1-6

architecture 2-1

benefits 1-7

CTIOS Toolkit Agent Desktop (see CD) Built
with CTI OS ActiveX Controls 4-12

CWaitObject class methods

DumpEventMask 12-40

GetMask 12-41

GetTriggerEvent 12-42

SetMask 12-43

WaitOnMultipleEvents 12-43
CTI OS Developer’s Guide for Cisco ICM/IP

CWaitObject methods

InMask 12-42

D

DestroySilentMonitorManager session object
method 8-13

DestroyWaitObject session object method 8-14

DisableSkillGroupStatistics Session object
method 8-14

DisableSkillGroupStatistics SkillGroup object
method 11-22

Disconnecting from CTI OS Server 4-42

Disconnect session object method 8-15

DumpArg Arg class method 12-6

DumpArgs

Arguments class method 12-20

DumpEventMask CWaitObject class
method 12-40

E

EmergencyAssistCtl softphone control 5-15

EnableSkillGroupStatistics Session object
method 8-16

EnableSkillGroupStatistics SkillGroup object
method 11-23

Event flow 1-3
IN-3
CC Enterprise & Hosted Editions Release 7.1(1)

Index
G

GetAgentState agent object method 9-19

GetArgType 12-6

GetCallContext call object method 10-17

GetCallData call object method 10-19

GetCurrentSilentMonitor session object
method 8-27

GetElement Arguments class method 12-21

GetIPPhoneInfo SilentMonitorManager object
method 13-6

GetMask CWaitObject class method 12-41

GetMonitoredAgent agent object method 9-20

GetMonitoredCall agent object method 9-21

GetObjectFromObjectID session object
method 8-28

GetSessionInfo SilentMonitorManager object
method 13-8

GetSkillGroups agent object method 9-22

GetSMSessionList SilentMonitorManager
object method 13-10

GetTriggerEvent CWaitObject class
method 12-42

GetType

Arg class method 12-7

CILRefArg class method 12-33

GetValue

Arguments class method 12-23

CILRefArg class method 12-35

GetValueType

Arg class method 12-8
IN-4
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterp
Grid controls 5-5

GridControl softphone control 5-16

H

Hold call object method 10-20

HoldCtl softphone control 5-16

I

IAgentEvents interface 6-75

ICallEvents interface 6-27

InMask CWaitObject method 12-42

Integrating an application 4-4

IsAgent agent object method 9-25

IsAgent session object method 8-31

ISessionEvents interface 6-3

ISkillGroupEvents interface. 6-107

IsMonitoredTarget SilentMonitorManager
object method 13-11

IsSupervisor session object method 8-31

IsValid

Arguments class method 12-26

L

Login agent object method 9-26

Login button 5-5

Logout agent object method 9-29
rise & Hosted Editions Release 7.1(1)

Index
Logout button 5-6

LogToServer session object method 8-32

M

MakeCall agent object method 9-31

MakeCallCtl softphone control 5-17

MakeConsultCall call object method 10-21

messages

RTP_STARTED_EVENT 6-115

RTP_STOPPED_EVENT 6-117

Monitor mode 2-6

N

Not Ready button 5-7

NumElements

Arguments class method 12-27

O

Object Interface Framework 2-4

Object properties

setting 3-13

OnAgentPrecallAbortEvent event 6-29, 6-30

OnAgentPrecallEvent event 6-27

OnAgentStatistics event 6-81

OnAlternateCallConf event 6-31

OnAnswerCallConf event 6-31
CTI OS Developer’s Guide for Cisco ICM/IP

OnCallBegin event 6-32

OnCallCleared event 6-35

OnCallConferenced event 6-37

OnCallConnectionCleared event 6-36

OnCallDataUpdate event 6-40

OnCallDelivered event 6-43

OnCallDequeuedEvent event 6-45

OnCallDiverted event 6-47

OnCallEnd event 6-48

OnCallEstablished event 6-49

OnCallFailed event 6-51

OnCallHeld event 6-52

OnCallOriginated event 6-53

OnCallQueuedEvent event 6-54

OnCallReachedNetworkEvent event 6-56

OnCallRetrieved event 6-58

OnCallRTPStopped event 6-117

OnCallServiceInitiatedEvent event 6-58

OnCallStartRecordingConf event 6-60

OnCallStopRecordingConf event 6-60

OnCallTransferred event 6-61

OnClearCallConf event 6-64

OnClearConnectionConf event 6-65

OnConferenceCallConf event 6-66

OnConnectionClosed message 6-4

OnConnection event 6-3

OnConnectionFailure event 6-4

OnConnectionRejected event 6-5

OnConsultationCallConf event 6-66
IN-5
CC Enterprise & Hosted Editions Release 7.1(1)

Index
OnControlFailureConf event 6-67

OnCTIOSFailure event 6-5

OnCurrentAgentReset message 6-7

OnCurrentCallChanged message 6-8

OnGlobalSettingsDownloadConf event 6-8

OnHeartbeat event 6-21

OnHoldCallConf event 6-68

OnMakeCallConf event 6-93

OnMissingHeartbeat event 6-21

OnMonitorModeEstablished event 6-22

OnReconnectCallConf event 6-69

OnRetrieveCallConf event 6-69

OnRTPStarted event 6-115

OnRTPStreamTimedoutEvent event 6-128

OnSendDTMFConf event 6-70

OnSetAgentModeEvent event 6-103

OnSetAgentStateConf event 6-104

OnSilentMonitorSessionDisconnected
event 6-122

OnSilentMonitorStartedEvent event 6-119

OnSilentMonitorStartRequestedEvent
event 6-121

OnSilentMonitorStatusReportEvent
event 6-124

OnSilentMonitorStopRequestedEvent
event 6-123

OnSkillGroupStatisticsUpdated event 6-107

OnSnapshotCallConf event 6-70

OnSnapshotDeviceConf event 6-23

OnStartSilentMonitorConf event 6-118

OnStopSilentMonitorConf event 6-127
IN-6
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterp
OnTransferCallConf event 6-74

Q

QueryAgentState agent object method 9-38

R

Ready button 5-7

Reconnect call object method 10-27

ReconnectCtl softphone control 5-18

RecordCtl softphone control 5-22

Reference counting 2-7

Referencing COM components 4-16

Registering for events in Visual Basic 4-17

RemoveItem

Arguments class method 12-28

ReportBadCallLine agent object method 9-39

RequestAgentTeamList agent object
method 9-40

RequestDesktopSettings session object
method 8-34

Request-response mechanism 1-4

RequestSupervisorAssist agent object
method 9-41

Retrieve call object method 10-29

S

screen pop 1-2
rise & Hosted Editions Release 7.1(1)

Index
SendChatMessage agent object method 9-42

SendDTMFSignal call object method 10-30

Session object methods

DisableSkillGroupStatistics 8-14

EnableSkillGroupStatistics 8-16

SetSupervisorSilentMonitorMode 8-41

session object methods 8-4

Connect 8-8

CreateSilentMonitorManager 8-11

CreateWaitObject 8-12

DestroySilentMonitorManager 8-13

DestroyWaitObject 8-14

Disconnect 8-15

GetObjectFromObjectID 8-28

IsAgent 8-31

IsSupervisor 8-31

LogToServer 8-32

RequestDesktopSettings 8-34

SetAgent 8-36

SetCurrentCall 8-38

SetCurrentSilentMonitor 8-39

SetMessageFilter 8-40

session object methods
GetCurrentSilentMonitor 8-27

SetAgent session object method 8-36

SetAgentState agent object method 9-44

SetCallData call object method 10-32

SetCurrentCall session object method 8-38

SetCurrentSilentMonitor session object
method 8-39
CTI OS Developer’s Guide for Cisco ICM/IP

SetElement

Arguments class method 12-29

SetIPPhoneInfo SilentMonitorManager object
method 13-11

SetMask CWaitObject class method 12-43

SetMessageFilter session object method 8-40

SetSupervisorSilentMonitorMode session
object method 8-41

Setting object properties 3-13

Setting request parameters 3-13

SetValue

Arg class method 12-11

Arguments class method 12-30

SilentMonitorManager object methods

AcceptSilentMonitoring 13-4

GetIPPhoneInfo 13-6

GetSessionInfo 13-8

GetSMSessionList 13-10

IsMonitoredTarget 13-11

SetIPPhoneInfo 13-11

StartSilentMonitorRequest 13-13

StartSMMonitoredMode 13-15

StartSMMonitoringMode 13-17

StopSilentMonitorMode 13-18

StopSilentMonitorRequest 13-18

SingleStepConference call object method 10-33

SingleStepTransfer call object method 10-36

SkillGroup object methods 11-21

DisableSkillGroupStatistics 11-22

EnableSkillGroupStatistics 11-23
IN-7
CC Enterprise & Hosted Editions Release 7.1(1)

Index
SkillgroupStatisticsCtl softphone control 5-19

Snapshot call object method 10-37

softphone controls

AgentSelectCtl 5-9

AgentStateCtl 5-5

AgentStatisticsCtl 5-10

AlternateCtl 5-10

AnswerCtl 5-10

BadLineCtl 5-11

ButtonCtl 5-11

CallAppearanceCtl 5-11

ChatCtl 5-13

ConferenceCtl 5-13

EmergencyAssistCtl 5-15

GridControl 5-16

HoldCtl 5-16

MakeCallCtl 5-17

RecordCtl 5-22

SkillgroupStatisticsCtl 5-19

StatusBarCtl 5-19

SupervisorOnlyCtl 5-20

TransferCtl 5-22

StartMonitoringAgent agent object
method 9-46

StartMonitoringAgentTeam agent object
method 9-47

StartMonitoringAllAgentTeams agent object
method 9-48

StartMonitoringCall agent object method 9-49

StartRecord call object method 10-38
IN-8
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterp
StartSilentMonitorRequest
SilentMonitorManager object
method 13-13

StartSMMonitoredMode
SilentMonitorManager object
method 13-15

StartSMMonitoringMode
SilentMonitorManager object
method 13-17

Static libraries 4-21

StatusBarCtl softphone control 5-19

STLport 4-27

StopMonitoringAgent agent object
method 9-50

StopMonitoringAgentTeam agent object
method 9-51

StopMonitoringAllAgentTeams agent object
method 9-52

StopRecord call object method 10-39

StopSilentMonitorMode
SilentMonitorManager object
method 13-18

StopSilentMonitorRequest
SilentMonitorManager object
method 13-18

Subscribing for events in C++ 4-26

SuperviseCall agent object method 9-53

SupervisorOnlyCtl softphone control 5-20

T

Third-party call control 1-3

Transfer call object method 10-40
rise & Hosted Editions Release 7.1(1)

Index
TransferCtl softphone control 5-22

U

UniqueObjectID 3-13

V

Visual Basic 4-15

W

WaitOnMultipleEvents CWaitObject class
method 12-43

Work Not Ready button 5-8

Work Ready button 5-8
CTI OS Developer’s Guide for Cisco ICM/IP

IN-9

CC Enterprise & Hosted Editions Release 7.1(1)

Index
IN-10
CTI OS Developer’s Guide for Cisco ICM/IPCC Enterp
rise & Hosted Editions Release 7.1(1)

	CTI OS Developer's Guide for Cisco ICM/IPCC Enterprise & Hosted Editions
	Contents
	About This Guide
	Purpose
	Audience
	Conventions
	Organization
	Other Publications
	Obtaining Documentation
	Cisco.com
	Product Documentation DVD
	Ordering Documentation

	Documentation Feedback
	Field Alerts and Field Notices
	Cisco Product Security Overview
	Reporting Security Problems in Cisco Products

	Obtaining Technical Assistance
	Cisco Technical Support & Documentation Website
	Submitting a Service Request
	Definitions of Service Request Severity

	Obtaining Additional Publications and Information

	Introduction
	Introduction to CTI
	What is a CTI-Enabled Application?
	Screen Pop
	Agent State Control
	Third-Party Call Control

	Leveraging CTI Application Event Flow
	Asynchronous Events
	Request-Response Paradigm

	Overview of CTI OS
	Advantages of CTI OS as a CTI Development Interface
	Key Benefits of CTI OS for CTI Application Developers
	Illustrative Code Fragments

	CTI OS Client Interface Library Architecture
	Object Server Architecture
	Client Interface Library Architecture
	Connection Layer
	Service Layer
	Object Interface Layer
	Custom Application

	CIL Object Model
	Session Object
	Session Modes

	Agent Object
	Call Object
	SkillGroup Object
	Object Creation and Lifetime
	Reference Counting
	Call Object Lifetime
	Agent Object Lifetime
	Methods that Call AddRef()

	Where To Go From Here

	CIL Coding Conventions
	CTIOS CIL Data Types
	Asynchronous Program Execution
	CIL Error Codes
	COM Error Codes
	Generic Interfaces
	Arguments
	Accessing Properties and Parameters with GetValue
	Setting Object Properties and Request Parameters with SetValue

	UniqueObjectID
	Obtaining Objects from UniqueObjectIDs
	Using Button Enablement Masks

	Building Your Application
	Setting Up Your Environment for .NET
	Integrating with Microsoft Visual Studio .NET 2003
	Adding CTIOS Toolkit 7.1(1) Components to the “Add Reference” Dialog Box
	Adding Cisco CTI OS ActiveX 7.1(1) Controls to the Toolbox

	Integrating your Application with CTI OS via the CIL
	Planning and Designing Your Integration
	What Language and Interface to Use

	Testing CTI Applications
	Developing a Test Plan
	Test Environment

	Using the Samples
	Using The CTI OS ActiveX Controls
	Building a Simple Softphone with ActiveX Controls
	Adding a Hook for Screenpops
	CTIOS SessionResolver
	Sample VB .NET code to Retrieve CallVariable1

	Using the COM CIL in Visual Basic 6.0
	Referencing COM Components in Visual Basic 6.0
	Registering for Events in Visual Basic 6.0
	Next Steps

	Using the COM CIL in Visual C++ 7.1(1)
	Adding COM Support to your Application
	Important Note About COM Method Syntax

	Using the CIL Dynamic Link Libraries
	Creating an Instance of a COM Object
	Subscribing and Unsubscribing to COM Events in C++
	Next Steps

	Using the C++ CIL and Static Libraries
	Header Files and Libraries
	Project Settings for Compiling and Linking
	Subscribing for Events in C++
	STLPort
	Next Steps

	Using the Java CIL Libraries
	Next Steps

	Using the .NET CIL Libraries
	Next Steps

	Connecting to the CTI OS Server
	How to Create the Session Instance
	Session Object Lifetime (C++ only)

	How to Set the Event Listener and Subscribe to Events
	How to Set Connection Parameters for the Session
	How to Connect the Session to the CTI OS Server
	Dealing with Connection Failures
	Connection Failure Events
	Connection Attempt Error Codes in Java and .NET CIL
	Configuring the Agent to Automatically Log In after Failover
	Stopping the Failover Procedure

	How to Set the Connection Mode
	Setting the Connection Mode in the OnConnection() Event Handler
	When to Use Agent Mode
	How to Select Agent Mode
	When to Use Monitor Mode
	Monitor Mode Filters
	How to Select Monitor Mode
	How to Deal with Failover In Monitor Mode

	Settings Download
	Disconnecting from CTI OS Server

	Logging In and Logging Out an Agent
	How to Log In an Agent
	How to Handle Duplicate Log In Attempts
	Overview
	How to Create Values in the CTI OS Server Registry to Control Duplicate Log In Attempts
	How to Get Registry Configuration Values to Your Desktop Application
	How to Detect the Duplicate Log In Attempt in the Desktop Application
	How to Handle Duplicate Log In Attempts in the Desktop Application

	How to Log Out an Agent
	Typical Logout Procedure

	Working with Calls
	Handling Multiple Calls
	What is the Current Call?
	How to Get a Call Object
	How to Set the Current Call for the Session
	Call Wrapup
	Logout and NotReady Reason Codes
	When Does the Application Receive the OnButtonEnablementChange() Event?
	What to do in the OnButtonEnablementChange() Event
	Checking Not Ready Bitmasks in OnButtonEnablementChange() Event
	OnButtonEnablementChange() Event in Supervisor Desktop Applications

	Making Requests
	Preventing Multiple Duplicate Requests

	Working with Events
	Handling Events in Order
	Coding Considerations for CIL Event Handling
	Monitoring the OnCallEnd() Event

	Working with Agent Statistics
	Overview
	How to Set Up an Agent Application to Receive Agent Statistics
	How to Set Up a Monitor-Mode Application to Receive Agent Statistics
	Accessing Agent Statistics
	Overview
	Registering to the eOnNewAgentStatisticsEvent() (JAVA)
	Registering to the OnAgentStatistics() (C++, COM, and VB)
	How to Get Agent Statistics through the Agent Instance

	Changing Which Agent Statistics are Sent
	Agent Statistics Computed by the Sample CTI OS Desktop

	Working with Skill Group Statistics
	Overview
	How to Set Up a Monitor-Mode Application to Receive Skill Group Statistics
	Accessing Skill Group Statistics
	Overview
	Registering to the eOnNewSkillGroupStatisticsEvent() (JAVA)
	Registering to the OnSkillGroupStatisticsUpdated() (C++, COM, and VB)

	Changing Which Skill Group Statistics are Sent
	Skill Group Statistics Computed by the Sample CTI OS Desktop

	Enabling Silent Monitor in your Application
	Creating a Silent Monitor Object
	Setting the Session Mode
	Monitoring Mode
	Monitored Mode

	Initiating and Ending a Silent Monitor Session
	Monitoring Client Code Sample
	Monitored Client Code Sample

	Shutting Down Silent Monitor Manager

	Deployment of Custom CTI OS Applications
	Deploying Applications Using the ActiveX Controls
	Deploying Applications Using COM (But Not ActiveX Controls)
	Deploying Applications using C++ CIL
	Deploying Applications using .NET CIL
	Custom Application and CTI OS Security

	Building Supervisor Applications
	General Flow
	Monitored and Unmonitored Events
	Requesting and Monitoring the Supervisor’s Team(s)
	OnNewAgentTeamMember
	OnNewAgentTeamMember Events and Supervisors
	OnMonitoredAgentStateChange Events
	OnMonitoredAgentInfo Event
	Time in State
	OnSkillInfo Event
	Populating an Agent Grid

	Monitoring Agents
	OnSupervisorButtonChange
	Monitored Call Events
	Making Agents Ready and Logging Agents Out

	Monitoring Calls
	MonitoredCallEvents
	Barging into Calls
	Intercepting Calls
	Updating Monitored Call Data

	Sample Code in the CTI OS Toolkit
	.NET Samples
	CTI Toolkit Combo Desktop.NET
	CtiOs Data Grid.NET
	All Agents Sample.NET
	All Calls Sample.NET

	Java CIL Samples
	Win32 Samples

	CTI OS ActiveX Controls
	Property Pages
	Button Controls and Grid Controls
	Button Controls
	Grid Controls
	Supervisor Status Bar

	CTI OS ActiveX Control Descriptions
	AgentStateCtl
	AgentSelectCtl
	AgentStatisticsCtl
	AlternateCtl
	AnswerCtl
	BadLineCtl
	CallAppearanceCtl
	ChatCtl
	ConferenceCtl
	EmergencyAssistCtl
	HoldCtl
	MakeCallCtl
	ReconnectCtl
	SkillgroupStatisticsCtl
	StatusBarCtl
	SupervisorOnlyCtl
	RecordCtl
	TransferCtl

	The Silent Monitor StandAlone ActiveX Control
	Connect
	Disconnect
	StartMonitoring
	StopMonitoring
	SilentMonitor Com Object Events
	Deployment
	Sample Usage in Visual Basic 6.0

	Event Interfaces and Events
	Event Publication Model
	ISessionEvents Interface
	OnConnection
	Syntax
	Parameters

	OnConnectionClosed
	OnConnectionFailure
	Syntax
	Parameters

	OnConnectionRejected
	Syntax
	Parameters

	OnCTIOSFailure
	Syntax
	Parameters
	Remarks

	OnCurrentAgentReset
	Syntax
	Parameters

	OnCurrentCallChanged
	Syntax
	Parameters

	OnFailure Event
	OnGlobalSettingsDownloadConf
	Syntax
	Parameters

	OnHeartbeat
	Syntax
	Parameters

	OnMissingHeartbeat
	Syntax
	Parameters

	OnMonitorModeEstablished
	Syntax
	Parameters

	OnSnapshotDeviceConf
	Syntax
	Parameters
	Remarks

	OnSnapshotSkillGroupList
	OnTranslationRoute
	Syntax
	Parameters

	ICallEvents Interface
	OnAgentPrecallEvent
	Syntax
	Parameters

	OnAgentPrecallAbortEvent
	Syntax
	Parameters

	OnAlternateCallConf
	Syntax

	Parameters
	OnAnswerCallConf
	Syntax
	Parameters

	OnCallBegin
	Syntax
	Parameters

	OnCallCleared
	Syntax
	Parameters

	OnCallConnectionCleared
	Syntax
	Parameters

	OnCallConferenced
	Syntax
	Parameters

	OnCallDataUpdate
	Syntax
	Parameters

	OnCallDelivered
	Syntax
	Parameters

	OnCallDequeuedEvent
	Syntax
	Parameters

	OnCallDiverted
	Syntax
	Parameters

	OnCallEnd
	Syntax
	Parameters

	OnCallEstablished
	Syntax
	Parameters

	OnCallFailed
	Syntax
	Parameters

	OnCallHeld
	Syntax
	Parameters

	OnCallOriginated
	Syntax
	Parameters

	OnCallQueuedEvent
	Syntax
	Parameters

	OnCallReachedNetworkEvent
	Syntax
	Parameters

	OnCallRetrieved
	Syntax
	Parameters

	OnCallServiceInitiatedEvent
	Syntax
	Parameters

	OnCallStartRecordingConf
	Syntax
	Parameters

	OnCallStopRecordingConf
	Syntax
	Parameters

	OnCallTransferred
	Syntax
	Parameters

	OnClearCallConf
	Syntax
	Parameters

	OnClearConnectionConf
	Syntax
	Parameters

	OnConferenceCallConf
	Syntax
	Parameters

	OnConsultationCallConf
	Syntax
	Parameters

	OnControlFailureConf
	Syntax
	Parameters

	OnHoldCallConf
	Syntax
	Parameters

	OnMakePredictiveCallConf
	OnReconnectCallConf
	Syntax
	Parameters

	OnReleaseCallConf
	OnRetrieveCallConf
	Syntax
	Parameters

	OnSendDTMFConf
	Syntax
	Parameters

	OnSnapshotCallConf
	Syntax
	Parameters

	OnTransferCallConf
	Syntax
	Parameters

	IAgentEvents Interface
	OnAgentDeskSettingsConf
	Syntax
	Parameters

	OnAgentInfoEvent
	Syntax
	Parameters

	OnAgentStateChange
	Syntax
	Parameters

	OnAgentStatistics
	Syntax
	Parameters

	OnChatMessage
	Syntax
	Parameters

	OnControlFailureConf
	Syntax
	Parameters

	OnEmergencyCall
	Syntax
	Parameters
	Remarks

	OnLogoutFailed
	Syntax
	Parameters

	OnMakeCallConf
	Syntax
	Parameters

	OnNewAgentTeamMember
	Syntax
	Parameters

	OnPostLogout
	Syntax
	Parameters
	Remarks

	OnPreLogout
	Syntax
	Parameters

	OnQueryAgentStateConf
	Syntax
	Parameters

	OnSetAgentModeEvent
	Syntax
	Parameters

	OnSetAgentStateConf
	Syntax
	Parameters

	OnStartMonitoringAgent
	Syntax
	Parameters
	Remarks

	OnStopMonitoringAgent
	Syntax
	Parameters
	Remarks

	OnUserMessageConf

	ISkillGroupEvents Interface
	OnSkillGroupStatisticsUpdated
	Syntax
	Parameters

	OnSkillInfoEvent
	Parameters

	IButtonEnablementEvents
	OnButtonEnablementChange
	Parameters

	OnSupervisorButtonChange
	Parameters
	Remarks

	IMonitoredAgentEvents Interface
	IMonitoredCallEvents Interface
	ISilentMonitorEvents
	OnCallRTPStarted
	Syntax
	Parameters

	OnCallRTPStopped
	Syntax
	Parameters

	OnStartSilentMonitorConf
	Syntax
	Parameters

	OnSilentMonitorStartedEvent
	Syntax
	Parameters

	OnSilentMonitorStartRequestedEvent
	Syntax
	Parameters

	OnSilentMonitorSessionDisconnected
	Syntax
	Parameters

	OnSilentMonitorStopRequestedEvent
	Syntax
	Parameters

	OnSilentMonitorStatusReportEvent
	Syntax
	Parameters

	OnStopSilentMonitorConf
	Syntax
	Parameters

	OnRTPStreamTimedoutEvent
	Syntax
	Parameters

	IGenericEvents Interface
	OnEvent
	Syntax

	Java Adapter Classes
	IAllInOne
	IAgentEvents
	IButtonEnablementEvents
	ICallEvents
	ISkillGroupEvents

	Events in Java CIL
	Events in .NET CIL
	Getting All Event Parameters
	How to Get All Parameters from an Event

	CtiOs Object
	Methods
	DumpProperties
	Syntax
	Parameters
	Return Value

	GetAllProperties
	Syntax
	Parameters
	Return Value

	GetElement
	Syntax
	Parameters
	Return Value

	GetLastError (Java and .NET only)
	Syntax
	Parameters
	Returns

	Remarks
	GetNumProperties
	Syntax
	Parameters
	Return Value

	GetPropertyName
	Syntax
	Parameters
	Return Value

	GetPropertyType
	Syntax
	Parameters
	Return Value

	GetValue
	Syntax
	Parameters
	Return Value

	GetValueArray
	Syntax
	Parameters
	Return Value

	GetValueBoolObj (Java and .NET only)
	Syntax
	Parameters
	Returns

	GetValueInt
	Syntax
	Parameters
	Return Value

	GetValueIntObj (Java only)
	Syntax
	Parameters
	Returns

	GetValueShortObj (Java only)
	Syntax
	Parameters
	Return Value

	GetValueString
	Syntax
	Parameters
	Return Value

	GetValueUIntObj (Java only)
	Syntax
	Parameters
	Returns

	GetValueUShortObj (Java only)
	Syntax
	Parameters
	Returns

	IsValid
	Syntax
	Parameters
	Return Value

	ReportError (Java and .NET only)
	Syntax
	Parameters
	Returns

	SetValue (Java and .NET)
	Syntax
	Parameters
	Returns

	SetValue (C++, COM, and VB)
	Syntax
	Parameters
	Return Values
	Remarks

	Session Object
	Session Object Properties
	Methods
	AddEventListener (Java and .NET only)
	Syntax
	Parameters
	Returns

	AddListener Methods (C++ only)
	Syntax
	Remarks

	Connect
	Syntax
	Parameters
	Return Values
	Remarks

	CreateSilentMonitorManager
	Syntax
	Parameters
	Return Value
	Remarks

	CreateWaitObject (C++, Java, and .NET)
	Syntax
	Parameters
	Return Values

	DestroySilentMonitorManager
	Syntax
	Parameters
	Return Values
	Remarks

	DestroyWaitObject (C++ , Java, and .NET)
	Syntax
	Parameters
	Return Values
	Remarks

	DisableSkillGroupStatistics (C++ , Java, and .NET)
	Syntax
	Parameters
	Return Value
	Remarks

	Disconnect
	Syntax
	Parameters
	Return Values

	DumpProperties
	EnableSkillGroupStatistics (C++, Java, and .NET)
	Syntax
	Parameters
	Return Value
	Remarks

	GetAllAgents
	Syntax
	Parameters
	Return Values
	Remarks

	GetAllCalls
	Syntax
	Parameters
	Return Values
	Remarks

	GetAllProperties
	GetAllSkillGroups
	Syntax
	Parameters
	Return Values

	GetCurrentAgent
	Syntax
	Parameters
	Return Values

	GetCurrentCall
	Syntax
	Parameters
	Return Values

	GetCurrentSilentMonitor
	Syntax
	Return Values

	GetElement
	GetNumProperties
	GetObjectFromObjectID
	Syntax
	Parameters
	Return Values
	Remarks

	GetPropertyName
	GetPropertyType
	GetSystemStatus (Java, .NET, and C++ only)
	Syntax
	Parameters
	Returns

	GetValue Methods
	IsAgent
	Syntax
	Parameters
	Return Values

	IsSupervisor
	Syntax
	Parameters
	Return Values

	IsValid
	LogToServer
	Syntax
	Parameters
	Return Values

	RemoveEventListener (Java and .NET)
	Syntax
	Parameters
	Returns

	RemoveListener Methods (C++ only)
	Syntax
	Remarks

	RequestDesktopSettings
	Syntax
	Parameters
	Return Values
	Remarks

	SetAgent
	Syntax
	Parameters
	Return Values

	SetCurrentCall
	Syntax
	Parameters
	Return Values
	Remarks

	SetCurrentSilentMonitor
	Syntax
	Parameters
	Return Values
	Remarks

	SetMessageFilter
	Syntax
	Parameters
	Return Values
	Remarks

	SetSupervisorMonitorMode
	Syntax
	Parameters
	Return Values

	Notes On Message Filters
	Message Filter Syntax
	A Simple Example
	General Form of Filter Syntax
	Combining Filters
	Filtering for Specific Events
	Events Not Allowed In Filter Expressions

	Filtering Skillgroup Statistics

	Agent Object
	Agent Object Properties
	Agent Statistics
	Methods
	Arguments Parameters
	DisableAgentStatistics
	Syntax
	Parameters
	Return Value

	DisableSkillGroupStatistics
	Syntax
	Parameters
	Return Value

	EnableAgentStatistics
	Syntax
	Parameters
	Return Value
	Remarks

	EnableSkillGroupStatistics
	Syntax
	Parameters
	Return Value
	Remarks

	GetAgentState
	Syntax
	Parameters
	Return Value

	GetAllProperties
	GetElement
	GetMonitoredAgent
	Syntax
	Parameters
	Return Value
	Remarks

	GetMonitoredCall
	Syntax
	Parameters
	Return Value
	Remarks

	GetNumProperties
	GetPropertyName
	GetPropertyType
	GetSkillGroups
	Syntax
	Parameters
	Return Value

	GetValue Methods
	IsAgent
	Syntax
	Parameters
	Return Value

	IsSupervisor
	Syntax
	Parameters
	Return Values

	Login
	Syntax
	Input Parameters
	Return Values
	Remarks

	Logout
	Syntax
	Input Parameters
	Return Values
	Remarks

	MakeCall
	Syntax
	Input Parameters
	Return Value
	Remarks

	MakeEmergencyCall
	Syntax
	Parameters
	Return Value
	Remarks

	QueryAgentState
	Syntax
	Input Parameters
	Return Values
	Remarks

	ReportBadCallLine
	Syntax
	Parameters
	Return Values

	RequestAgentTeamList
	Syntax
	Parameters
	Return Value
	Remarks

	RequestSupervisorAssist
	Syntax
	Parameters
	Return Values
	Remarks

	SendChatMessage
	Syntax
	Parameters
	Return Values
	Remarks

	SetAgentState
	Syntax
	Input Parameters
	Return Values
	Remarks

	StartMonitoringAgent
	Syntax
	Parameters
	Return Value
	Remarks

	StartMonitoringAgentTeam
	Syntax
	Parameters
	Return Value
	Remarks

	StartMonitoringAllAgentTeams
	Syntax
	Parameters
	Return Value
	Remarks

	StartMonitoringCall
	Description
	Syntax
	Parameters
	Return Value
	Remarks

	StopMonitoringAgent
	Syntax
	Parameters
	Return Value
	Remarks

	StopMonitoringAgentTeam
	Syntax
	Parameters
	Return Value
	Remarks

	StopMonitoringAllAgentTeams
	Syntax
	Parameters
	Return Value
	Remarks

	SuperviseCall
	Syntax
	Parameters
	Return Values
	Remarks

	Call Object
	Current Call Concept
	Accessing ECC Variables
	Retrieving ECC Variable Values
	Adding ECC Values
	Properties
	Methods
	Arguments Parameters
	Alternate
	Syntax
	Parameters
	Return Values
	Remarks

	Answer
	Syntax
	Parameters
	Return Value
	Remarks

	Clear
	Syntax
	Parameters
	Return Value
	Remarks

	ClearConnection
	Syntax
	Parameters
	Return Value
	Remarks

	Conference
	Syntax
	Parameters
	Return Value
	Remarks

	GetCallContext
	Syntax
	Parameters
	Return Value
	Remarks

	GetCallData
	Syntax
	Parameters
	Return Value
	Remarks

	Hold
	Syntax
	Parameters
	Return Value
	Remarks

	MakeConsultCall
	Syntax
	Parameters
	Return Values
	Remarks

	Reconnect
	Syntax
	Parameters
	Return Values
	Remarks

	Retrieve
	Syntax
	Parameters
	Return Values
	Remarks

	SendDTMFSignal
	Syntax
	Parameters
	Return Values
	Remarks

	SetCallData
	Syntax
	Parameters
	Return Values
	Remarks

	SingleStepConference
	Syntax
	Parameters
	Return Values
	Remarks

	SingleStepTransfer
	Syntax
	Parameters
	Return Values

	Snapshot
	Syntax
	Parameters
	Return Values
	Remarks

	StartRecord
	Syntax
	Parameters
	Return Value
	Remarks

	StopRecord
	Syntax
	Parameters
	Return Value
	Remarks

	Transfer
	Syntax
	Parameters
	Return Values
	Remarks

	SkillGroup Object
	Properties
	Statistics
	Methods
	DisableSkillGroupStatistics
	Syntax
	Parameters
	Return Value
	Remarks

	DumpProperties
	EnableSkillGroupStatistics
	Syntax
	Parameters
	Return Value
	Remarks

	GetElement
	GetValue Methods
	IsValid
	SetValue

	Helper Classes
	Arg Class
	AddRef
	Syntax
	Parameters
	Return Values

	Clone
	Syntax
	Output Parameters
	Return Values

	CreateInstance
	Syntax
	Parameters
	Return Values
	Remarks

	DumpArg
	Syntax
	Parameters
	Return Values

	GetArgType (.NET only)
	Syntax
	Parameters
	Returns

	GetType
	Syntax
	Output Parameters
	Return Values

	GetValue Methods
	Syntax
	Parameters
	Return Values

	Release
	Syntax
	Parameters
	Return Values

	SetValue
	Syntax
	Parameters
	Return Values

	Arguments Class
	Usage Notes
	AddItem (C++, COM, VB only)
	Syntax
	Parameters
	Return Value

	AddRef (C++ and COM only)
	Syntax
	Parameters
	Return Values

	Clear
	Syntax
	Parameters
	Return Value

	Clone
	Syntax
	Parameters
	Return Value

	CreateInstance (C++ and COM only)
	Syntax
	Parameters
	Return Value
	Remarks

	DumpArgs
	Syntax
	Parameters
	Return Values

	GetElement Methods
	Syntax

	Parameters
	Return Value

	GetValue Methods
	Syntax
	Parameters
	Return Values
	Remarks

	IsValid
	Syntax
	Parameters
	Return Values

	NumElements
	Syntax
	Parameters
	Return Value

	Release (C++ and COM only)
	Syntax
	Parameters
	Return Values

	RemoveItem
	Syntax
	Parameters
	Return Values

	SetElement (C++, COM, and VB only)
	Syntax
	Parameters
	Return Values

	SetValue
	Syntax
	Parameters
	Return Values
	Remarks

	CILRefArg Class (C++, Java, and .NET only)
	GetType
	Syntax
	Output Parameters
	Return Values

	GetUniqueObjectID (Java and .NET only)
	Syntax
	Parameters
	Return Values
	Remarks

	GetValue
	Syntax
	Output Parameters
	Return Values

	SetValue
	Syntax
	Input Parameters
	Return Values

	CCtiOsException Class (C++, Java, and .NET only)
	CCtiosException Constructor
	Syntax
	Input Parameters
	Return Values

	GetCode
	Syntax
	Parameters
	Return Values

	GetStatus
	Syntax
	Parameters
	Return Values

	GetString
	Syntax
	Parameters
	Return Values

	What
	Syntax
	Parameters
	Return Values

	CWaitObject Class
	Methods
	CreateWaitObject
	DestroyWaitObject
	DumpEventMask
	Syntax
	Parameters
	Return Values

	GetMask
	Syntax
	Parameters
	Return Values

	GetTriggerEvent
	Syntax
	Parameters
	Return Values

	InMask
	Syntax
	Parameters
	Return Values

	SetMask
	Syntax
	Parameters
	Return Values

	WaitOnMultipleEvents
	Syntax
	Parameters
	Return Values

	Logger Class (.NET and Java Only)
	Methods
	Logger() Constructor
	Syntax
	Parameters
	Return Values

	GetTraceMask
	Syntax
	Parameters
	Return Values

	SetTraceMask
	Syntax
	Parameters
	Return Values

	AddLogListener
	Syntax
	Parameters
	Return Values

	RemoveLogListener
	Syntax
	Parameters
	Return Values

	Trace
	Syntax
	Parameters
	Return Values

	LogWrapper Class (.NET and Java Only)
	Methods
	LogWrapper() Constructor
	Syntax
	Parameters

	Return Values
	LogWrapper(String filename) Constructor
	Syntax
	Parameters

	Return Values
	LogWrapper(string, int, int, int) Constructor
	Syntax
	Parameters
	Return Values

	Dispose (.NET Only)
	Syntax
	Parameters
	Return Values

	GetMaxDaysBeforeExpire (.NET Only)
	Syntax
	Parameters
	Return Values

	SetMaxNumberFiles
	Syntax
	Parameters
	Return Values

	GetMaxNumberFiles (.NET Only)
	Syntax
	Parameters
	Return Values

	SetMaxDaysBeforeExpire
	Syntax
	Parameters
	Return Values

	ProcessConfigFile
	Syntax
	Parameters
	Return Values

	SilentMonitorManager Object
	Properties
	Methods
	Argument Parameter Rules
	AcceptSilentMonitoring
	Syntax
	Parameters
	Return Values

	GetIPPhoneInfo
	Syntax
	Parameters
	Return Value

	GetSessionInfo
	Syntax
	Parameters
	Return Values

	GetSMSessionList
	Syntax
	Parameters
	Return Values

	IsMonitoredTarget
	Syntax
	Parameters
	Return Value

	SetIPPhoneInfo
	Syntax
	Parameters
	Return Values

	StartSilentMonitorRequest
	Syntax
	Parameters
	Return Values
	Remarks

	StartSMMonitoredMode
	Syntax
	Parameters
	Return Values

	StartSMMonitoringMode
	Syntax
	Parameters
	Return Values

	StopSilentMonitorMode
	Syntax
	Parameters
	Return Values

	StopSilentMonitorRequest
	Syntax
	Parameters
	Return Values

	CTI OS Keywords and Enumerated Types
	Keywords
	Java CIL Keywords
	.NET CIL Keywords

	Enumerated Types
	Java Interfaces

	CTI OS Logging
	Creating CTI OS Client Logs (COM and C++)
	How to Install the Tracing Mechanism (COM and C++)

	Setting Trace Levels (COM and C++)
	Configuring Tracing (COM and C++)
	Java CIL Logging Utilities
	ILogEvents
	LogEvent
	Logger
	Syntax

	LogEventsAdapter
	Syntax

	Logging and Tracing (Java)
	Logging and Tracing (.NET)
	Using the Default Logging Mechanism
	How to Log Trace Events Using the LogWrapper Class

	Creating a Custom Logging Mechanism
	How to Log Trace Events Using the Logger Class

	Configuring Tracing (Java and .NET)

	Migrating From CTI OS 6.0
	Introduction
	Migrating a C++ CIL application
	Migrating a COM CIL Application
	Migrating a C++ Application that uses COM CIL
	Migrating a Visual Basic 6.0 to use COM CIL
	Migrate to Visual Basic .NET and use .NET CIL

	Migrate to Visual Basic .NET and use .COM CIL

	Migrating a Visual Basic 6.0 to Use COM CIL
	Migrate to Visual Basic .NET and use .NET CIL
	Migrate to Visual Basic .NET and use CTIOS ActiveX Controls

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

